863 resultados para Astrophysics and Astronomy
Resumo:
Frequency coupling in multifrequency discharges is a complex nonlinear interaction of the different frequency components. An alpha-mode low pressure rf capacitively coupled plasma operated simultaneously with two frequencies is investigated and the coupling of the two frequencies is observed to greatly influence the excitation and ionization within the discharge. Through this, plasma production and sustainment are dictated by the corresponding electron dynamics and can be manipulated through the dual-frequency sheath. These mechanisms are influenced by the relative voltage and also the relative phase of the two frequencies.
Resumo:
We say that the Peano theorem holds for a topological vector space $E$ if, for any continuous mapping $f : {\Bbb R}\times E \to E$ and any $(t(0), x(0))$ is an element of ${\Bbb R}\times E$, the Cauchy problem $\dot x(t) = f(t,x(t))$, $x(t(0)) = x(0)$, has a solution in some neighborhood of $t(0)$. We say that the weak version of Peano theorem holds for $E$ if, for any continuous map $f : {\Bbb R}\times E \to E$, the equation $\dot x(t) = f (t, x(t))$ has a solution on some interval. We construct an example (answering a question posed by S. G. Lobanov) of a Hausdorff locally convex topological vector space E for which the weak version of Peano theorem holds and the Peano theorem fails to hold. We also construct a Hausdorff locally convex topological vector space E for which the Peano theorem holds and any barrel in E is neither compact nor sequentially compact.
Resumo:
We provide a sufficient condition of analyticity of infinitely differentiable eigenfunctions of operators of the form Uf(x) = integral a(x, y) f(b( x, y)) mu(dy) acting on functions f: [u, v] --> C ( evolution operators of one-dimensional dynamical systems and Markov processes have this form). We estimate from below the region of analyticity of the eigenfunctions and apply these results for studying the spectral properties of the Frobenius-Perron operator of the continuous fraction Gauss map. We prove that any infinitely differentiable eigenfunction f of this Frobenius-Perron operator, corresponding to a non-zero eigenvalue admits a (unique) analytic extension to the set C\(-infinity, 1]. Analyzing the spectrum of the Frobenius Perron operator in spaces of smooth functions, we extend significantly the domain of validity of the Mayer and Ropstorff asymptotic formula for the decay of correlations of the Gauss map.
Resumo:
This paper reviews recent experimental activity in the area of optimization, control, and application of laser accelerated proton beams, carried out at the Rutherford Appleton Laboratory and the Laboratoire pour l’Utilisation des Lasers Intenses 100 TW facility in France. In particular, experiments have investigated the role of the scale length at the rear of the plasma in reducing target-normal-sheath-acceleration acceleration efficiency. Results match with recent theoretical predictions and provide information in view of the feasibility of proton fast-ignition applications. Experiments aiming to control the divergence of the proton beams have investigated the use of a laser-triggered microlens, which employs laser-driven transient electric fields in cylindrical geometry, enabling to focus the emitted
protons and select monochromatic beam lets out of the broad spectrum beam. This approach could be advantageous in view
of a variety of applications. The use of laser-driven protons as a particle probe for transient field detection has been developed and
applied to a number of experimental conditions. Recent work in this area has focused on the detection of large-scale self-generated magnetic fields in laser-produced plasmas and the investigation of fields associated to the propagation of relativistic electron both on the surface and in the bulk of targets irradiated by high-power laser pulses.
Resumo:
In this paper, we analyze the enormous potential of engineering source/drain extension (SDE) regions in FinFETs for ultra-low-voltage (ULV) analog applications. SDE region design can simultaneously improve two key analog figures of merit (FOM)-intrinsic de gain (A(vo)) and cutoff frequency (f(T)) for 60 and 30 nm FinFETs operated at low drive current (J(ds) = 5 mu A/mu m). The improved Avo and fT are nearly twice compared to those of devices with abrupt SDE regions. The influence of the SDE region profile and its impact on analog FOM is extensively analyzed. Results show that SDE region optimization provides an additional degree of freedom apart from device parameters (fin width and aspect ratio) to design future nanoscale analog devices. The results are analyzed in terms of spacer-to-straggle ratio a new design parameter for SDE engineered devices. This paper provides new opportunities for realizing future ULV/low-power analog design with FinFETs.
Resumo:
The electronic and bonding properties of nitrogenated carbon nanotubes (N-CNTs) exposed to chlorine plasma were investigated using C and N K-edge x-ray absorption near-edge structure (XANES) and scanning photoelectron microscopy (SPEM). The C and N K-edge XANES spectra of chlorine-treated N-CNTs consistently reveal the formation of pyridinelike N-CNTs by the observation of 1s ->pi(*)(e(2u)) antibonding and 1s ->pi(*)(b(2g)) bonding states. The valence-band photoemission spectra obtained from SPEM images indicate that chlorination of the nanotubes enhances the C-N bonding. First-principles calculations of the partial densities of states in conjunction with C K-edge XANES data identify the presence of C-Cl bonding in chlorine treated N-CNTs. (C) 2007 American Institute of Physics.
Resumo:
The characterization of a direct current, low-pressure, and high-density reflex discharge plasma source operating in argon and in nitrogen, over a range of pressures 1.0-10(-2) mbar, discharge currents 20-200 mA, and magnetic fields 0-120 G, and its parametric characterization is presented. Both external parameters, such as the breakdown potential and the discharge voltage-current characteristic, and internal parameters, like the charge carrier's temperature and density, plasma potential, floating potential, and electron energy distribution function, were measured. The electron energy distribution functions are bi-Maxwellian, but some structure is observed in these functions in nitrogen plasmas. There is experimental evidence for the existence of three groups of electrons within this reflex discharge plasma. Due to the enhanced hollow cathode effect by the magnetic trapping of electrons, the density of the cold group of electrons is as high as 10(18) m(-3), and the temperature is as low as a few tenths of an electron volt. The bulk plasma density scales with the dissipated power. Another important feature of this reflex plasma source is its high degree of uniformity, while the discharge bulk region is free of electric field. (C) 2002 American Institute of Physics.
Resumo:
A new type of direct current, high-density, and low electron temperature reflex plasma source, obtained as a hybrid between a modified hollow-cathode discharge and a Penning ionization gauge discharge is presented. The plasma source was tested in argon, nitrogen, and oxygen over a range pressure of 1.0-10(-3) mbar, discharge currents 20-200 mA, and magnetic field 0-120 Gauss. Both external parameters, such as breakdown potential and the discharge voltage-current characteristic, and its internal parameters, like the electron energy distribution function, electron and ion densities, and electron temperature, were measured. Due to the enhanced hollow-cathode effect by the magnetic trapping of electrons, the density of the bulk plasma is as high as 10(18) m(-3), and the electron temperature is as low as a few tenths of electron volts. The plasma density scales with the dissipated power. Another important feature of this reflex plasma source is its high degree of uniformity, while the discharge bulk region is free of an electric field. (C) 2004 American Institute of Physics.
Resumo:
The potential of laser-induced fluorescence spectroscopy of atoms is reviewed with emphasis on the determination of absolute densities. Examples of experiments with single-photon and two-photon excitation are presented. Calibration methods applicable with the different schemes are discussed. A new method is presented that has the potential to allow absolute measurement in plasmas of elevated pressure where collisional depletion of the excited state is present.
Resumo:
The nonlinear nature of the rf absorption in a helicon-produced plasma was recently evidenced by the observation that the helicon wave damping as well as the level of short-scale electrostatic fluctuations excited in the helicon plasma increases with rf power. Correlation methods using electrostatic probes as well as microwave back-scattering at the upper-hybrid resonance allow identifying the fluctuations as ion-sound and Trivelpiece– Gould waves satisfying the frequency and wavenumber matching conditions for the parametric decay instability of the helicon pump wave. Furthermore, the growth rates and thresholds deduced from their temporal growth are in good agreement with theoretical predictions for the parametric decay instability that takes into account realistic damping rates for the decay waves as well as a non-vanishing parallel wavenumber of the helicon pump. The close relationship between the rf absorption and the excitation of the fluctuations was investigated in more detail by performing time- and space-resolved measurements of the helicon wave field and the electrostatic fluctuations.
Resumo:
Time- and space-resolved magnetic (B-dot) probe measurements in combination with measurements of the plasma parameters were carried out to investigate the relationship between the formation and propagation of helicon modes and the radio frequency (rf) power deposition in the core of a helicon plasma. The Poynting flux and the absorbed power density are deduced from the measured rf magnetic field distribution in amplitude and phase. Special attention is devoted to the helicon absorption under linear and nonlinear conditions. The present investigations are attached to recent observations in which the nonlinear nature of the helicon wave absorption has been demonstrated by showing that the strong absorption of helicon waves is correlated with parametric excitation of electrostatic fluctuations.