183 resultados para Aqueous polymeric coatings


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite their widespread use, there is a paucity of information concerning the effect of storage on the rheological properties of pharmaceutical gels that contain organic and inorganic additives. Therefore, this study examined the effect of storage (1 month at either 4 or 37 degrees C) on the rheological and mechanical properties of gels composed of either hydroxypropylmethylcellulose (3-5% w/w, HPMC) or hydroxyethylcellulose (3-5% w/w, HEC) and containing or devoid of dispersed organic (tetracycline hydrochloride 2% w/w) or inorganic (iron oxide 0.1% w/w) agents. The mechanical properties were measured using texture profile analysis whereas the rheological properties were analyzed using continuous shear rheometry and modeled using the Power Law model. All formulations exhibited pseudoplastic flow with minimal thixotropy. Increasing polymer concentration (3-5% w/w) significantly increased the consistency, hardness, compressibility, and adhesiveness of the formulations due to increased polymer chain entanglement. Following storage (I month at 4 and 37 degrees C) the consistency and mechanical properties of additive free HPMC gets (but not HEC gels) increased, due to the time-dependent development of polymer chain entanglements. Incorporation of tetracycline hydrochloride significantly decreased and increased the rheological and mechanical properties of HPMC and HEC gels, respectively. Conversely, the incorporation of iron oxide did not affect these properties. Following storage, the rheological and mechanical properties of HPMC and HEC formulations were markedly compromised. This effect was greater following storage at 37 than at 4 degrees C and, additionally, greater in the presence of tetracycline hydrochloride than iron oxide. It is suggested that the loss of rheological/mechanical structure was due to chain depolymerization, facilitated by the redox properties of tetracycline hydrochloride and iron oxide. These observations have direct implications for the design and formulation of gels containing an active pharmaceutical ingredient. (c) 2005 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dynamic mechanical analysis (DMA) is an analytical technique in which an oscillating stress is applied to a sample and the resultant strain measured as functions of both oscillatory frequency and temperature. From this, a comprehensive knowledge of the relationships between the various viscoelastic parameters, e.g. storage and loss moduli, mechanical damping parameter (tan delta), dynamic viscosity, and temperature may be obtained. An introduction to the theory of DMA and pharmaceutical and biomedical examples of the use of this technique are presented in this concise review. In particular, examples are described in which DMA has been employed to quantify the storage and loss moduli of polymers, polymer damping properties, glass transition temperature(s), rate and extent of curing of polymer systems, polymer-polymer compatibility and identification of sol-gel transitions. Furthermore, future applications of the technique for the optimisation of the formulation of pharmaceutical and biomedical systems are discussed. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of the process variables, pH of aqueous phase, rate of addition of organic, polymeric, drug-containing phase to aqueous phase, organic:aqueous phase volume ratio and aqueous phase temperature on the entrapment of propranolol hydrochloride in ethylcellulose (N4) microspheres prepared by the solvent evaporation method were examined using a factorial design. The observed range of drug entrapment was 1.43 +/- 0.02%w/w (pH 6, 25 degrees C, phase volume ratio 1:10, fast rate of addition) to 16.63 +/- 0.92%w/w (pH 9, 33 degrees C, phase volume ratio 1:10, slow rate of addition) which corresponded to mean entrapment efficiencies of 2.86 and 33.26, respectively. Increased pH, increased temperature and decreased rate of addition significantly enhanced entrapment efficiency. However, organic:aqueous phase volume ratio did not significantly affect drug entrapment. Statistical interactions were observed between pH and rate of addition, pH and temperature, and temperature and rate of addition. The observed interactions involving pH are suggested to be due to the abilities of increased temperature and slow rate of addition to sufficiently enhance the solubility of dichloromethane in the aqueous phase, which at pH 9, but not pH 6, allows partial polymer precipitation prior to drug partitioning into the aqueous phase. The interaction between temperature and rate of addition is due to the relative lack of effect of increased temperature on drug entrapment following slow rate of addition of the organic phase. In comparison to the effects of pH on drug entrapment, the contributions of the other physical factors examined were limited.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study reports the use of texture profile analysis (TPA) to mechanically characterize polymeric, pharmaceutical semisolids containing at least one bioadhesive polymer and to determine interactions between formulation components. The hardness, adhesiveness, force per unit time required for compression (compressibility), and elasticity of polymeric, pharmaceutical semisolids containing polycarbophil (1 or 5% w/w), polyvinylpyrrolidone (3 or 5% w/w), and hydroxyethylcellulose (3, 5, or 10% w/w) in phosphate buffer (pH 6.8) were determined using a texture analyzer in the TPA mode (compression depth 15 mm, compression rate 8 mm s(-1) 15 s delay period). Increasing concentrations of polycarbophil, poly vinylpyrrolidone, and hydroxyethylcellulose significantly increased product hardness, adhesiveness, and compressibility but decreased product elasticity. Statistically, interactions between polymeric formulation components were observed within the experimental design and were probably due to relative differences in the physical states of polyvinylpyrrolidone and polycarbophil in the formulations, i.e., dispersed/dissolved and unswollen/swollen, respectively. Increased product hardness and compressibility were possibly due to the effects of hydroxyethylcellulose, polyvinylpyrrolidone, and polycarbophil on the viscosity of the formulations. Increased adhesiveness was related to the concentration and, more importantly, to the physical state of polycarbophil. Decreased product elasticity was due to the increased semisolid nature of the product. TPA is a rapid, straightforward analytical technique that may be applied to the mechanical characterization of polymeric, pharmaceutical semisolids. It provides a convenient means to rapidly identify physicochemical interactions between formulation components. (C) 1996 John Wiley & Sons, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To formulate therapeutic proteins into polymeric devices the protein is typically in the solid state, which can be achieved by the process of freeze-drying. However, freeze-drying not only risks denaturing the protein but it can adversely affect the cure characteristics of protein-loaded silicone elastomers. This study demonstrates that a variation in the parameters of the freeze-dryer can significantly affect the residual moisture content of freeze-dried BSA, which in turn has an effect on the bulk density and flow properties of the BSA. The bulk density and flow properties of the BSA subsequently affect the cure characteristics of BSA-loaded silicone elastomers. An increase in the residual moisture content results in the freeze-dried BSA having a decreased bulk density and poor flow properties which can have a detrimental effect on the cure characteristics of a freeze-dried BSA-loaded silicone elastomer. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2012

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lipid peroxidation is a common feature of many chemical and biological processes, and is governed by a complex kinetic scheme. A fundamental stage in kinetic investigations of lipid peroxidation is the accurate determination of the rate of peroxidation, which in many instances is heavily reliant on the method of finite differences. Such numerical approximations of the first derivative are commonly employed in commercially available software, despite suffering from considerable inaccuracy due to rounding and truncation errors. As a simple solution to this, we applied three empirical sigmoid functions (viz. the Prout-Tompkins, Richards & Gompertz functions) to data obtained from the AAPH-mediated peroxidation of aqueous linoleate liposomes in the presence of increasing concentrations of Trolox, evaluating the curve fitting parameters using the widely available Microsoft Excel Solver add-in. We have demonstrated that the five-parameter Richards' function provides an excellent model for this peroxidation, and when applied to the determination of fundamental rate constants, produces results in keeping with those available in the literature. Overall, we present a series of equations, derived from the Richards' function, which enables direct evaluation of the kinetic measures of peroxidation. This procedure has applicability not only to investigations of lipid peroxidation, but to any system exhibiting sigmoid kinetics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The physicochemical characteristics of the injectable polymeric gels for use in the treatment of periodontal disease were investigated. The hardness, compressibility, and mucoadhesive properties of the gel were determined using a TA-XT2 Texture analyzer. The effect of of polymer concentration on the various viscoelastic, textural, bioadhesive properties and drug release were also analyzed using multifactorial analysis of variance. It was found that increased polymer concentration significantly increased gel structure, reduced polymer chain mobility and subsequently decreased the swelling/erosion and diffusion properties of the gel networks.