466 resultados para Apoptosis . Autophagy . Diabetic retinopathy .


Relevância:

100.00% 100.00%

Publicador:

Resumo:

<p>Endothelial dysfunction is a central pathomechanism in diabetes-associated complications. We hypothesized a pathogenic role in this dysfunction of cathepsin S (Cat-S), a cysteine protease that degrades elastic fibers and activates the protease-activated receptor-2 (PAR2) on endothelial cells. We found that injection of mice with recombinant Cat-S induced albuminuria and glomerular endothelial cell injury in a PAR2-dependent manner. In vivo microscopy confirmed a role for intrinsic Cat-S/PAR2 in ischemia-induced microvascular permeability. In vitro transcriptome analysis and experiments using siRNA or specific Cat-S and PAR2 antagonists revealed that Cat-S specifically impaired the integrity and barrier function of glomerular endothelial cells selectively through PAR2. In human and mouse type 2 diabetic nephropathy, only CD68(+) intrarenal monocytes expressed Cat-S mRNA, whereas Cat-S protein was present along endothelial cells and inside proximal tubular epithelial cells also. In contrast, the cysteine protease inhibitor cystatin C was expressed only in tubules. Delayed treatment of type 2 diabetic db/db mice with Cat-S or PAR2 inhibitors attenuated albuminuria and glomerulosclerosis (indicators of diabetic nephropathy) and attenuated albumin leakage into the retina and other structural markers of diabetic retinopathy. These data identify Cat-S as a monocyte/macrophage-derived circulating PAR2 agonist and mediator of endothelial dysfunction-related microvascular diabetes complications. Thus, Cat-S or PAR2 inhibition might be a novel strategy to prevent microvascular disease in diabetes and other diseases.</p>

Relevância:

100.00% 100.00%

Publicador:

Resumo:

<p>PURPOSE: It is widely held that neurons of the central nervous system do not store glycogen and that accumulation of the polysaccharide may cause neurodegeneration. Since primary neural injury occurs in diabetic retinopathy, we examined neuronal glycogen status in the retina of streptozotocin-induced diabetic and control rats.</p><p>METHODS: Glycogen was localized in eyes of streptozotocin-induced diabetic and control rats using light microscopic histochemistry and electron microscopy, and correlated with immunohistochemical staining for glycogen phosphorylase and phosphorylated glycogen synthase (pGS).</p><p>RESULTS: Electron microscopy of 2-month-old diabetic rats (n = 6) showed massive accumulations of glycogen in the perinuclear cytoplasm of many amacrine neurons. In 4-month-old diabetic rats (n = 11), quantification of glycogen-engorged amacrine cells showed a mean of 26 cells/mm of central retina (SD ± 5), compared to 0.5 (SD ± 0.2) in controls (n = 8). Immunohistochemical staining for glycogen phosphorylase revealed strong expression in amacrine and ganglion cells of control retina, and increased staining in cell processes of the inner plexiform layer in diabetic retina. In control retina, the inactive pGS was consistently sequestered within the cell nuclei of all retinal neurons and the retinal pigment epithelium (RPE), but in diabetics nuclear pGS was reduced or lost in all classes of retinal cell except the ganglion cells and cone photoreceptors.</p><p>CONCLUSIONS: The present study identifies a large population of retinal neurons that normally utilize glycogen metabolism but show pathologic storage of the polysaccharide during uncontrolled diabetes.</p>

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: To study the effect of multimedia education on acceptance of comprehensive eye examinations (CEEs), critical for detecting glaucoma and diabetic eye disease, among rural Chinese patients using a randomized, controlled design.<br/>METHODS: Patients aged â¥40 years were recruited from 52 routine clinic sessions (26 intervention, 26 control) conducted at seven rural hospitals in Guangdong, China. Subjects answered demographic questionnaires, were tested on knowledge about CEEs and chronic eye disease, and were told the cost of examination (range US$0-8). At intervention sessions, subjects were cluster-randomized to view a 10-minute video on the value of CEEs and retested. Control subjects were not retested. Trial outcomes were acceptance of CEEs (primary outcome) and final knowledge scores (secondary outcome).<br/>RESULTS: At baseline, &gt;70% (pâ=â0.70) of both intervention (nâ=â241, 61.2â±â12.3 years) and control (nâ=â218, 58.4â±â11.7 years) subjects answered no knowledge questions correctly, but mean scores on the test (maximum 5 points) increased by 1.39 (standard deviation 0.12) points (pâ&lt;â0.001) after viewing the video. Intervention (73.0%) and control (72.9%) subjects did not differ in acceptance of CEEs (pâ&gt;â0.50). In mixed-effect logistic regression models, acceptance of CEEs was associated with availability of free CEEs (odds ratio 18.3, 95% confidence interval 1.32-253.0), but not group assignment or knowledge score. Acceptance was 97.5% (79/81) when free exams were offered.<br/>CONCLUSIONS: Education increased knowledge about but not acceptance of CEEs, which was generally high. Making CEEs free could further increase acceptance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

<p>Retinal angiogenesis is tightly regulated to meet oxygenation and nutritional requirements. In diseases such as proliferative diabetic retinopathy and neovascular age-related macular degeneration, uncontrolled angiogenesis can lead to blindness. Our goal is to better understand the molecular processes controlling retinal angiogenesis and discover novel drugs that inhibit retinal neovascularization. Phenotype-based chemical screens were performed using the ChemBridge Diverset<sup style="margin: 0px; padding: 0px; border: 0px; outline-style: none; font-size: 0.85em; font-family: 'Lucida Sans Unicode', Arial, 'Lucida Grande', Tahoma, Verdana, Helvetica, sans-serif; line-height: 0; text-align: justify; color: rgb(64, 56, 56);">TM</sup> library and inhibition of hyaloid vessel angiogenesis in Tg(<em style="margin: 0px; padding: 0px; border: 0px; outline-style: none; font-size: 12.8px; font-family: 'Lucida Sans Unicode', Arial, 'Lucida Grande', Tahoma, Verdana, Helvetica, sans-serif; line-height: 19.2px; text-align: justify; vertical-align: baseline; color: rgb(64, 56, 56);">fli1:EGFP</em>) zebrafish. 2-[(<em style="margin: 0px; padding: 0px; border: 0px; outline-style: none; font-size: 12.8px; font-family: 'Lucida Sans Unicode', Arial, 'Lucida Grande', Tahoma, Verdana, Helvetica, sans-serif; line-height: 19.2px; text-align: justify; vertical-align: baseline; color: rgb(64, 56, 56);">E</em>)-2-(Quinolin-2-yl)vinyl]phenol, (quininib) robustly inhibits developmental angiogenesis at 4â10 μM in zebrafish and significantly inhibits angiogenic tubule formation in HMEC-1 cells, angiogenic sprouting in aortic ring explants, and retinal revascularization in oxygen-induced retinopathy mice. Quininib is well tolerated in zebrafish, human cell lines, and murine eyes. Profiling screens of 153 angiogenic and inflammatory targets revealed that quininib does not directly target VEGF receptors but antagonizes cysteinyl leukotriene receptors 1 and 2 (CysLT<sub style="margin: 0px; padding: 0px; border: 0px; outline-style: none; font-size: 0.85em; font-family: 'Lucida Sans Unicode', Arial, 'Lucida Grande', Tahoma, Verdana, Helvetica, sans-serif; line-height: 0; text-align: justify; color: rgb(64, 56, 56);">1â2</sub>) at micromolar IC<sub style="margin: 0px; padding: 0px; border: 0px; outline-style: none; font-size: 0.85em; font-family: 'Lucida Sans Unicode', Arial, 'Lucida Grande', Tahoma, Verdana, Helvetica, sans-serif; line-height: 0; text-align: justify; color: rgb(64, 56, 56);">50</sub> values. In summary, quininib is a novel anti-angiogenic small-molecule CysLT receptor antagonist. Quininib inhibits angiogenesis in a range of cell and tissue systems, revealing novel physiological roles for CysLT signaling. Quininib has potential as a novel therapeutic agent to treat ocular neovascular pathologies and may complement current anti-VEGF biological agents.</p>

Relevância:

100.00% 100.00%

Publicador:

Resumo:

<p>The retina, an immune privileged tissue, has specialized immune defense mechanisms against noxious insults that may exist in diseases such as age-related macular degeneration (AMD), diabetic retinopathy (DR), uveoretinitis and glaucoma. The defense system consists of retinal innate immune cells (including microglia, perivascular macrophages, and a small population of dendritic cells) and the complement system. Under normal aging conditions, retinal innate immune cells and the complement system undergo a low-grade activation (parainflammation) which is important for retinal homeostasis. In disease states such as AMD and DR, the parainflammatory response is dysregulated and develops into detrimental chronic inflammation. Complement activation in the retina is an important part of chronic inflammation and may contribute to retinal pathology in these disease states. Here, we review the evidence that supports the role of uncontrolled or dysregulated complement activation in various retinal degenerative and angiogenic conditions. We also discuss current strategies that are used to develop complement-based therapies for retinal diseases such as AMD. The potential benefits of complement inhibition in DR, uveoretinitis and glaucoma are also discussed, as well as the need for further research to better understand the mechanisms of complement-mediated retinal damage in these disease states.</p>

Relevância:

100.00% 100.00%

Publicador:

Resumo:

<p>Lipoprotein-associated phospholipase A2 (Lp-PLA2) hydrolyses oxidized low-density lipoproteins into proinflammatory products, which can have detrimental effects on vascular function. As a specific inhibitor of Lp-PLA2, darapladib has been shown to be protective against atherogenesis and vascular leakage in diabetic and hypercholesterolemic animal models. This study has investigated whether Lp-PLA2 and its major enzymatic product, lysophosphatidylcholine (LPC), are involved in blood-retinal barrier (BRB) damage during diabetic retinopathy. We assessed BRB protection in diabetic rats through use of species-specific analogs of darapladib. Systemic Lp-PLA2 inhibition using SB-435495 at 10 mg/kg (i.p.) effectively suppressed BRB breakdown in streptozotocin-diabetic Brown Norway rats. This inhibitory effect was comparable to intravitreal VEGF neutralization, and the protection against BRB dysfunction was additive when both targets were inhibited simultaneously. Mechanistic studies in primary brain and retinal microvascular endothelial cells, as well as occluded rat pial microvessels, showed that luminal but not abluminal LPC potently induced permeability, and that this required signaling by the VEGF receptor 2 (VEGFR2). Taken together, this study demonstrates that Lp-PLA2 inhibition can effectively prevent diabetes-mediated BRB dysfunction and that LPC impacts on the retinal vascular endothelium to induce vasopermeability via VEGFR2. Thus, Lp-PLA2 may be a useful therapeutic target for patients with diabetic macular edema (DME), perhaps in combination with currently administered anti-VEGF agents.</p>

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite familial clustering of nephropathy and retinopathy severity in type 1 diabetes, few gene variants have been consistently associated with these outcomes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chronic myeloid leukemia (CML) is treated effectively with tyrosine kinase inhibitors (TKIs); however, 2 key problems remain-the insensitivity of CML stem and progenitor cells to TKIs and the emergence of TKI-resistant BCR-ABL mutations. BCR-ABL activity is associated with increased proteasome activity and proteasome inhibitors (PIs) are cytotoxic against CML cell lines. We demonstrate that bortezomib is antiproliferative and induces apoptosis in chronic phase (CP) CD34(+) CML cells at clinically achievable concentrations. We also show that bortezomib targets primitive CML cells, with effects on CD34(+)38(-), long-term culture-initiating (LTC-IC) and nonobese diabetic/severe combined immunodeficient (NOD/SCID) repopulating cells. Bortezomib is not selective for CML cells and induces apoptosis in normal CD34(+)38(-) cells. The effects against CML cells are seen when bortezomib is used alone and in combination with dasatinib. Bortezomib causes proteasome but not BCR-ABL inhibition and is also effective in inhibiting proteasome activity and inducing apoptosis in cell lines expressing BCR-ABL mutations, including T315I. By targeting both TKI-insensitive stem and progenitor cells and TKI-resistant BCR-ABL mutations, we believe that bortezomib offers a potential therapeutic option in CML. Because of known toxicities, including myelosuppression, the likely initial clinical application of bortezomib in CML would be in resistant and advanced disease. (Blood. 2010;115:2241-2250)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Direct pharmacological targeting of the anti-apoptotic B-cell lymphoma-2 (BCL-2) family is an attractive therapeutic strategy for treating cancer. Obatoclax is a pan-BCL-2 family inhibitor currently in clinical development. Here we show that, although obatoclax can induce mitochondrial apoptosis dependent on BCL-2 associated x protein/BCL-2 antagonist killer (BAX/BAK) consistent with its on-target pharmacodynamics, simultaneous silencing of both BAX and BAK did not abolish acute toxicity or loss of clonogenicity. This is despite complete inhibition of apoptosis. Obatoclax dramatically reduced viability without inducing loss of plasma membrane integrity. This was associated with rapid processing of light chain-3 (LC3) and reduction of S6 kinase phosphorylation, consistent with autophagy. Dramatic ultrastructural vacuolation, not typical of autophagy, was also induced. Silencing of beclin-1 failed to prevent LC3 processing, whereas knockout of autophagy-related (Atg) 7 abolished LC3 processing but failed to prevent obatoclax-induced loss of clonogenicity or ultrastructural changes. siRNA silencing of Atg7 in BAX/BAK knockout mouse embryonic fibroblasts did not prevent obatoclax-induced loss of viability. Cells selected for obatoclax resistance evaded apoptosis independent of changes in BCL-2 family expression and displayed reduced LC3 processing. In summary, obatoclax exhibits BAX- and BAK-dependent and -independent mechanisms of toxicity and activation of autophagy. Mechanisms other than autophagy and apoptosis are blocked in obatoclax resistant cells and contribute significantly to obatoclax's anticancer efficacy. Cell Death and Disease (2010) 1, e108; doi:10.1038/cddis.2010.86; published online 16 December 2010

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Protein kinases C are a family of serine threonine protein kinases that play key roles in extracellular signal transduction. Inappropriate activation of protein kinase C has been implicated in the pathophysiology of many diseases, including diabetes mellitus. Indeed, protein kinase C activation may contribute not only to the pathogenesis of diabetic complications such as nephropathy and retinopathy, but also to insulin resistance. Growing awareness that protein kinase C isoforms subserve specific subcellular functions has led to the development of isoform-specific inhibitors, which may be useful investigational tools and therapeutic agents for attenuating the effects of inappropriate protein kinase C activity. Here we review the role played by protein kinases C in diabetic nephropathy and the recent progress that has been made to modulate its activity using specific inhibitors. Curr Opin Nephrol Hypertens 7:563-570. (C) 1998 Lippincott Wiiliams &amp; Wilkins.