230 resultados para Antimicrobial property
Resumo:
One common mechanism of resistance against antimicrobial peptides in Gram-negative bacteria is the addition of 4-amino-4-deoxy-l-arabinose (l-Ara4N) to the lipopolysaccharide (LPS) molecule. Burkholderia cenocepacia exhibits extraordinary intrinsic resistance to antimicrobial peptides and other antibiotics. We have previously discovered that unlike other bacteria, B. cenocepacia requires l-Ara4N for viability. Here, we describe the isolation of B. cenocepacia suppressor mutants that remain viable despite the deletion of genes required for l-Ara4N synthesis and transfer to the LPS. The absence of l-Ara4N is the only structural difference in the LPS of the mutants compared with that of the parental strain. The mutants also become highly sensitive to polymyxin B and melittin, two different classes of antimicrobial peptides. The suppressor phenotype resulted from a single amino acid replacement (aspartic acid to histidine) at position 31 of LptG, a protein component of the multi-protein pathway responsible for the export of the LPS molecule from the inner to the outer membrane. We propose that l-Ara4N modification of LPS provides a molecular signature required for LPS export and proper assembly at the outer membrane of B. cenocepacia, and is the most critical determinant for the intrinsic resistance of this bacterium to antimicrobial peptides.
Resumo:
Cationic antimicrobial peptides and polymyxins are a group of naturally occurring antibiotics that can also possess immunomodulatory activities. They are considered a new source of antibiotics for treating infections by bacteria that are resistant to conventional antibiotics. Members of the genus Burkholderia, which includes various human pathogens, are inherently resistant to antimicrobial peptides. The resistance is several orders of magnitude higher than that of other Gram-negative bacteria such as Escherichia coli, Salmonella enterica, or Pseudomonas aeruginosa. This review summarizes our current understanding of antimicrobial peptide and polymyxin B resistance in the genus Burkholderia. These bacteria possess major and minor resistance mechanisms that will be described in detail. Recent studies have revealed that many other emerging Gram-negative opportunistic pathogens may also be inherently resistant to antimicrobial peptides and polymyxins and we propose that Burkholderia sp. are a model system to investigate the molecular basis of the resistance in extremely resistant bacteria. Understanding resistance in these types of bacteria will be important if antimicrobial peptides come to be used regularly for the treatment of infections by susceptible bacteria because this may lead to increased resistance in the species that are currently susceptible and may also open up new niches for opportunistic pathogens with high inherent resistance.
Resumo:
Burkholderia cenocepacia is an important opportunistic pathogen of patients with cystic fibrosis. This bacterium is inherently resistant to a wide range of antimicrobial agents, including high concentrations of antimicrobial peptides. We hypothesized that the lipopolysaccharide (LPS) of B. cenocepacia is important for both virulence and resistance to antimicrobial peptides. We identified hldA and hldD genes in B. cenocepacia strain K56-2. These two genes encode enzymes involved in the modification of heptose sugars prior to their incorporation into the LPS core oligosaccharide. We constructed a mutant, SAL1, which was defective in expression of both hldA and hldD, and by performing complementation studies we confirmed that the functions encoded by both of these B. cenocepacia genes were needed for synthesis of a complete LPS core oligosaccharide. The LPS produced by SAL1 consisted of a short lipid A-core oligosaccharide and was devoid of O antigen. SAL1 was sensitive to the antimicrobial peptides polymyxin B, melittin, and human neutrophil peptide 1. In contrast, another B. cenocepacia mutant strain that produced complete lipid A-core oligosaccharide but lacked polymeric O antigen was not sensitive to polymyxin B or melittin. As determined by the rat agar bead model of lung infection, the SAL1 mutant had a survival defect in vivo since it could not be recovered from the lungs of infected rats 14 days postinfection. Together, these data show that the B. cenocepacia LPS inner core oligosaccharide is needed for in vitro resistance to three structurally unrelated antimicrobial peptides and for in vivo survival in a rat model of chronic lung infection.
Resumo:
There is a need for new antibiotics or combination of antibiotics that possess activity against increasingly resistant cystic fibrosis (CF) respiratory pathogens such as Pseudomonas aeruginosa and MRSA.
Resumo:
This study aimed to determine if Photodynamic Antimicrobial Chemotherapy (PACT) was effective in the treatment of Burkholderia cepacia complex infection and whether a synergistic effect was evident if PACT was used in combination with antibiotics. The susceptibility of both planktonic and biofilm cultures of B. cepacia complex strains to methylene blue (MB) and meso-tetra(n-methyl-4-pyridyl)porphine tetra-tosylate (TMP)-mediated PACT was determined alone and in combination with antibiotics used in the treatment of Cystic Fibrosis pulmonary infection caused by these bacteria. When B. cepacia complex strains were grown planktonically, high levels of kill of were achieved with both TMP and MB-mediated PACT with strain and photosensitizer specific differences apparent. When strains were grown in biofilm, antibiotic treatment alone was bactericidal in 17/36 (47%) strain/antibiotic combinations tested. When antibiotic treatment was combined with PACT, bactericidal activity was apparent for 33/36 (92%) strain/antibiotic combinations. No antagonism was detected between PACT and antibiotic treatment with the combination synergistic for 6/36 (17%) and indifferent for 30/36 (83%) strain/antibiotic combinations. PACT could be a viable treatment option, either alone or in combination with antibiotics for treatment of B. cepacia complex pulmonary infection.
Resumo:
Building on a proof by D. Handelman of a generalisation of an example due to L. Fuchs, we show that the space of real-valued polynomials on a non-empty set X of reals has the Riesz Interpolation Property if and only if X is bounded.
Resumo:
The skin secretions of frogs and toads (Anura) have long been a known source of a vast abundance of bioactive substances. In the past decade, transcriptome data of the granular glands of anuran skin has given new impetus to investigations of the putative constituent peptides. Alytes obstetricans was recently investigated and novel peptides with antimicrobial activity were isolated and functionally characterised. However, genetic data for the evolutionarily ancient lineage to which Alytes belongs (midwife toads; Alytidae) remains unavailable.
Here we present the first such genetic data for Alytidae, derived via the granular gland transcriptome of a closely-related species of midwife toad, Alytes maurus. First, we present nucleotide sequences of the entire peptide precursors for four novel antimicrobial peptides (AMPs). The two precursors resemble those from Bombinatoridae in both their structural architecture and amino acid sequence. Each precursor comprises two AMPs as tandem repeats, with a member of the alyteserin-1 family (alyteserin-1Ma: GFKEVLKADLGSLVKGIAAHVAN-NH2 or alyteserin-1Mb: GFKEVLKAGLGSLVKGIPAHVAN-NH2) followed by its corresponding member from the alyteserin-2 family (alyteserin-2Ma: FIGKLISAASGLLSHL-NH2 or alyteserin-2Mb: ILGAIIPLVSGLLSHL-NH2). Synthetic replicates of the four AMPs possessed minimal inhibitory concentrations (MICs) ranging from 9.5 to 300 µM, with the most potent being alyteserin-2Ma. Second, we also cloned the cDNA encoding an alytesin precursor, with the active alytesin exhibiting high sequence identity to bombesin-related peptides from other frogs. All putative mature peptide sequences were confirmed to be present in the skin secretion via LC/MS.
The close structural resemblance of the alyteserin genes that we isolated for A. maurus with those of Bombina provide independent molecular evidence for a close evolutionary relationship between these genera as well as more support for the convergent evolution of the AMP system within anurans. In contrast to the more evolutionarily conserved nature of neuropeptides (including alytesin, which we also isolated), the more variable nature of the AMP system together with the sporadic distribution of AMPs among anuran amphibians fuels in part our hypothesis that the latter system was co-opted secondarily to fulfil a function in the innate immune system, having originally evolved for defence against potential macropredators.
Resumo:
Using a primer to a conserved nucleotide sequence of previously-cloned skin peptides of Phyllomedusa species, two distinct cDNAs were “shotgun” cloned from a skin secretion-derived cDNA library of the frog, Phyllomedusa burmeisteri. The two ORFs separately encode chains A and B of an analog of the previously-reported heterodimeric peptide, distinctin. LC-MS/MS analysis of native versus dithiotreitol reduced crude venom, confirmed the predicted primary sequences as well as the cystine link between the two monomers. Distinctin predominantly exists in the venom as a heterodimer (A-B), neither of the constituent peptides were detected as monomer, whereas of the two possible homodimers (A-A or B-B), only B-B was detected in comparatively low quantity. In vitro dimerization of synthetic replicates of the monomers demonstrated that besides heterodimer, both homodimers are also formed in considerable amounts. Distinctin is the first example of an amphibian skin dimeric peptide that is formed by covalent linkage of two chains that are the products of different mRNAs. How this phenomenon occurs in vivo, to exclude significant homodimer formation, is unclear at present but a “favored steric state” type of interaction between chains is most likely.
Resumo:
Currently there is no clear understanding of the meaning of ‘slavery’ in modern international law. While generally it is accepted that the
authoritative definition of slavery is provided by Article 1 of the Slavery Convention 1926, in recent times slavery has been understood in such a wide variety of ways that effectively it is a meaningless term. This paper reflects on this interpretation problem and aims to redress this balance by reclaiming the core meaning of the legal definition. It applies property law perspectives to explain the conception of ownership invoked by Article 1, to argue that it remains relevant and to explore how it might be applied in identifying modern cases of slavery.
Resumo:
Host defense peptides (HDPs) are an evolutionarily conserved component of the innate immune response found in all living species. They possess antimicrobial activities against a broad range of organisms including bacteria, fungi, eukaryotic parasites, and viruses. HDPs also have the ability to enhance immune responses by acting as immunomodulators. We discovered a new family of HDPs derived from pathogenic helminth (worms) that cause enormous disease in animals and humans worldwide. The discovery of these peptides was based on their similar biochemical and functional characteristics to the human defense peptide LL-37. We propose that these new peptides modulate the immune response via molecular mimicry of mammalian HDPs thus providing a mechanism behind the anti-inflammatory properties of helminth infections.