300 resultados para Adenosine A2A receptor
Resumo:
Immunohistochemical studies on formalin-fixed, paraffin-embedded (FFPE) tissue utilizing polyclonal antibodies form the cornerstone of many reports claiming to demonstrate erythropoietin receptor (EPOR) expression in malignant tissue. Recently, Elliott et al. (Blood 2006;107:1892-1895) reported that the antibodies commonly used to detect EPOR expression also detect non-EPOR proteins, and that their binding to EPOR was severely abrogated by two synthetic peptides based on the sequence of heat shock protein (HSP) 70, HSP70-2, and HSP70-5. We have investigated the specificity of the C20 antibody for detecting EPOR expression in non-small cell lung carcinoma (NSCLC) utilizing tissue microarrays. A total of 34 cases were available for study. Antibody absorbed with peptide resulted in marked suppression of cytoplasmic staining compared with nonabsorbed antibody. Four tumors that initially showed a membranous pattern of staining retained this pattern with absorbed antibody. Positive membranous immunoreactivity was also observed in 6 of 30 tumors that originally showed a predominantly cytoplasmic pattern of staining. Using the C20 antibody for Western blots, we detected three main bands, at 100, 66, and 59 kDa. Preincubation with either peptide caused abolition of the 66-kDa band, which contains non-EPOR sequences including heat shock peptides. These results call into question the significance of previous immunohistochemical studies of EPOR expression in malignancy and emphasize the need for more specific anti-EPOR antibodies to define the true extent of EPOR expression in neoplastic tissue
Resumo:
BACKGROUND/AIMS: Chronic inhibition of nitric oxide (NO) synthesis is associated with hypertension, myocardial ischemia, oxidative stress and hypertrophy; expression of adrenomedullin (AM) and intermedin (IMD) and their receptor activity modifying proteins (RAMPs 1-3) is augmented in cardiomyocytes, indicating that the myocardial AM/ IMD system may be activated in response to pressure loading and ischemic insult. The aim was to examine effects on (i) parameters of cardiomyocyte hypertrophy and on (ii) expression of AM and IMD and their receptor components in NO-deficient cardiomyocytes of an intervention chosen specifically for ability to alleviate pressure loading and ischemic injury concurrently. METHODS: The NO synthesis inhibitor, N(G)-nitro-L-arginine methyl ester (L-NAME, 35 mg.kg(-1).day(-1)) was given to rats for 8 weeks, with/ without concurrent administration of beta-adrenoceptor antagonist, atenolol (25 mg.kg(-1).day(-1)) / calcium channel blocker, nifedipine (20mg.kg(-1).day(-1)). RESULTS: In L-NAME treated rats, atenolol / nifedipine abolished increases in systolic blood pressure and plasma AM and IMD levels and in left ventricular cardiomyocytes: (i) normalized increased cell width and mRNA expression of hypertrophic (sk-alpha-actin) and cardio-endocrine (ANP, BNP, ET) genes; (ii) normalized augmented membrane protein oxidation; (iii) normalized mRNA expression of AM, IMD, RAMP1, RAMP2 and RAMP3. CONCLUSIONS: normalization of blood pressure and membrane oxidant status together with prevention of hypertrophy and normalization of the augmented expression of AM, IMD and their receptor components in NO-deficient cardiomyocytes by atenolol / nifedipine supports involvement of both pressure loading and ischemic insult in stimulating cardiomyocyte hypertrophy and induction of these counter-regulatory peptides and their receptor components. Attenuation of augmented expression of IMD in this model cannot however be explained simply by prevention of cardiomyocyte hypertrophy.
Resumo:
Synthetic bradykinin antagonist peptides/peptoids have been powerful tools for delineating the roles of kinins in both normal physiology and in pathological states. Here, we report the identification of a novel, naturally occurring bradykinin B2 receptor antagonist peptide, helokinestatin, isolated and structurally characterized from the venoms of helodermatid lizards—the Gila monster (Heloderma suspectum) and the Mexican beaded lizard (Heloderma horridum). The primary structure of the peptide was established by a combination of microsequencing and mass spectroscopy as Gly-Pro-Pro-Tyr-Gln-Pro-Leu-Val-Pro-Arg (Mr 1122.62). A synthetic replicate of helokinestatin was found to inhibit bradykinin-induced vasorelaxation of phenylephrine pre-constricted rat tail artery smooth muscle, mediated by the B2 receptor sub-type, in a dose-dependent manner. Natural selection, that generates functional optimization of predatory reptile venom peptides, can potentially provide new insights for drug lead design or for normal physiological or pathophysiological processes.
Resumo:
The 67LR (67 kDa laminin receptor) is a cell-surface receptor with high affinity for its primary ligand. Its role as a laminin receptor makes it an important molecule both in cell adhesion to the basement membrane and in signalling transduction following this binding event. The protein also plays critical roles in the metastasis of tumour cells. Isolation of the protein from either normal or cancerous cells results in a product with an approx. molecular mass of 67 kDa. This protein is believed to be derived from a smaller precursor, the 37LRP (37 kDa laminin receptor precursor). However, the precise mechanism by which cytoplasmic 37LRP becomes cell-membrane-embedded 67LR is unclear. The process may involve post-translational fatty acylation of the protein combined with either homo- or hetero-dimerization, possibly with a galectin-3-epitope-containing partner. Furthermore, it has become clear that acting as a receptor for laminin is not the only function of this protein. 67LR also acts as a receptor for viruses, such as Sindbis virus and dengue virus, and is involved with internalization of the prion protein. Interestingly, unmodified 37LRP is a ribosomal component and homologues of this protein are found in all five kingdoms. In addition, it appears to be strongly associated with histones in the eukaryotic cell nucleus, although the precise role of these interactions is not clear. Here we review the current understanding of the structure and function of this molecule, as well as highlighting areas requiring further research.
Resumo:
Purpose: To prepare a nanoparticulate formulation expressing variable peripheral carboxyl density using non-endcapped and endcapped poly(lactide-co-glycolide), conjugated to antibodies recognising the siglec-7 receptor, which is expressed on most acute myeloid leukaemias. The aim is to exploit this receptor as a therapeutic target by constructing an internalising drug-loaded nanoparticle able to
translocate into cytoplasm by siglec receptor-mediated internalisation.
Materials and Methods: Antibodies to the siglec-7 (CD33-like) receptor were conjugated to dye-loaded nanoparticles using carbodiimide chemistry, giving 32.6 mg protein per mg of nanoparticles using 100% of the non-endcapped PLGA. Binding studies using cognate antigen were used to verify preservation of antibody function following conjugation.
Results: Mouse embryonic fibroblasts expressing recombinant siglec-7 receptor and exposed to NileRed-loaded nanoparticles conjugated to antibody accumulated intracellular fluorescence, which was not observed if either antibody or siglec-7 receptor was absent. Confocal microscopy revealed internalised perinuclear cytoplasmic staining, with an Acridine Orange-based analysis showing red staining in localised foci, indicating localisation within acidic endocytic compartments.
Conclusions: Results show antibody-NP constructs are internalised via siglec-7 receptor-mediated internalisation. If loaded with a therapeutic agent, antibody-NP constructs can cross into cytoplasmic
space and delivery drugs intracellularly to cells expressing CD33-like receptors, such as natural killer cells and monocytes.
Resumo:
Variations in the interleukin 4 receptor A (IL4RA) gene have been reported to be associated with atopy, asthma, and allergy, which may occur less frequently in subjects with type 1 diabetes (T1D). Since atopy shows a humoral immune reactivity pattern, and T1D results from a cellular (T lymphocyte) response, we hypothesised that alleles predisposing to atopy could be protective for T1D and transmitted less often than the expected 50% from heterozygous parents to offspring with T1D. We genotyped seven exonic single nucleotide polymorphisms (SNPs) and the -3223 C>T SNP in the putative promoter region of IL4RA in up to 3475 T1D families, including 1244 Finnish T1D families. Only the -3223 C>T SNP showed evidence of negative association (P=0.014). There was some evidence for an interaction between -3233 C>T and the T1D locus IDDM2 in the insulin gene region (P=0.001 in the combined and P=0.02 in the Finnish data set). We, therefore, cannot rule out a genetic effect of IL4RA in T1D, but it is not a major one.