220 resultados para ACCELERATION
Resumo:
We present photometric and spectroscopic data of the peculiar SN 2005la, an object which shows an optical light curve with some luminosity fluctuations and spectra with comparably strong narrow hydrogen and helium lines, probably of circumstellar nature. The increasing full width at half-maximum velocity of these lines is indicative of an acceleration of the circumstellar material. SN 2005la exhibits hybrid properties, sharing some similarities with both Type IIn supernovae and 2006jc-like (Type Ibn) events. We propose that the progenitor of SN 2005la was a very young Wolf-Rayet (WN-type) star which experienced mass ejection episodes shortly before core collapse.
Resumo:
In this paper we report on an experimental study of high harmonic radiation generated in nanometer-scale foil targets irradiated under normal incidence. The experiments constitute the first unambiguous observation of odd-numbered relativistic harmonics generated by the v x B component of the Lorentz force verifying a long predicted property of solid target harmonics. Simultaneously the observed harmonic spectra allow in-situ extraction of the target density in an experimental scenario which is of utmost interest for applications such as ion acceleration by the radiation pressure of an ultraintense laser.
Resumo:
Recently, the use of plasma optics to improve temporal pulse contrast has had a remarkable impact on the field of high- power laser-solid density interaction physics. Opening an avenue to previously unachievable plasma density gradients in the high intensity focus, this advance has enabled researchers to investigate new regimes of harmonic generation and ion acceleration. Until now, however, plasma optics for fundamental laser reflection have been used in the sub-relativistic intensity regime (10(15) - 10(16)Wcm(-2)) showing high reflectivity (similar to 70%) and good focusability. Therefore, the question remains as to whether plasma optics can be used for such applications in the relativistic intensity regime (> 10(18)Wcm(-2)). Previous studies of plasma mirrors (PMs) indicate that, for 40 fs laser pulses, the reflectivity fluctuates by an order of magnitude and that focusability of the beam is lost as the intensity is increased above 5 x 10(16)Wcm(-2). However, these experiments were performed using laser pulses with a contrast ratio of similar to 10(7) to generate the reflecting surface. Here, we present results for PM operation using high contrast laser pulses resulting in a new regime of operation - the high contrast plasma mirror (HCPM). In this regime, pulses with contrast ratio > 10(10) are used to form the PM surface at > 10(19)Wcm(-2), displaying excellent spatial filtering, reflected near- field beam profile of the fundamental beam and reflectivities of 60 +/- 5%. Efficient second harmonic generation is also observed with exceptional beam quality suggesting that this may be a route to achieving the highest focusable harmonic intensities. Plasma optics therefore offer the opportunity to manipulate ultra-intense laser beams both spatially and temporally. They also allow for ultrafast frequency up-shifting without detrimental effects due to group velocity dispersion (GVD) or reduced focusability which frequently occur when nonlinear crystals are used for frequency conversion.
Resumo:
As a diagnostic of high-intensity laser interactions (> 10(19) W cm(-2)), the detection of radioactive isotopes is regularly used for the characterization of proton, neutron, ion, and photon beams. This involves sample removal from the interaction chamber and time consuming post shot analysis using NaI coincidence counting or Ge detectors. This letter describes the use of in situ detectors to measure laser-driven (p,n) reactions in Al-27 as an almost real-time diagnostic for proton acceleration. The produced Si-27 isotope decays with a 4.16 s half-life by the predominantly beta+ emission, producing a strong 511 keV annihilation peak. (c) 2006 American Institute of Physics.
Resumo:
Guided compression offers an attractive route to explore some of the physics issues of hot electron heating and transport in the fast ignition route to inertial confinement fusion, whilst avoiding the difficulties associated with establishing the stability of the channel formation pulse. X-ray images are presented that show that the guided foil remains hydrodynamically stable during the acceleration phase, which is confirmed by two-dimensional simulations. An integrated conical compression/fast electron heating experiment is presented that confirms that this approach deserves detailed study. (C) 2000 American Institute of Physics. [S1070-664X(00)02809-3].
Resumo:
The dynamics of transient electric fields generated by the interaction of high intensity laser pulses with underdense plasmas has been studied experimentally with the proton projection imaging technique. The formation of a charged channel, the propagation of its front edge and the late electric field evolution have been characterized with high temporal and spatial resolution. Particle-in-cell simulations and an electrostatic, ponderomotive model reproduce the experimental features and trace them back to the ponderomotive expulsion of electrons and the subsequent ion acceleration.
Resumo:
Experimental demonstration of negative ion acceleration to MeV energies from sub-micron size droplets of water spray irradiated by ultra-intense laser pulses is presented. Thanks to the specific target configuration and laser parameters, more than 109 negative ions per steradian solid angle in 5% energy bandwidth are accelerated in a stable and reliable manner. To our knowledge, by virtue of the ultra-short duration of the emission, this is by far the brightest negative ion source reported. The data also indicate the existence of beams of neutrals with at least similar numbers and energies.
EVALUATION OF A FOAM BUFFER TARGET DESIGN FOR SPATIALLY UNIFORM ABLATION OF LASER-IRRADIATED PLASMAS
Resumo:
Experimental observations are presented demonstrating that the use of a gold-coated foam layer on the surface of a laser-driven target substantially reduces its hydrodynamic breakup during the acceleration phase. The data suggest that this results from enhanced thermal smoothing during the early-time imprint stage of the interaction. The target's kinetic energy and the level of parametric instability growth are shown to remain essentially unchanged from that of a conventionally driven target.
Resumo:
The interaction of an ultraintense, 30-fs laser pulse with a preformed plasma was investigated as a method of producing a beam of high-energy electrons. We used thin foil targets that are exploded by the laser amplified spontaneous emission preceding the main pulse. Optical diagnostics show that the main pulse interacts with a plasma whose density is well below the critical density. By varying the foil thickness, we were able to obtain a substantial emission of electrons in a narrow cone along the laser direction with a typical energy well above the laser ponderomotive potential. These results are explained in terms of wake-field acceleration.
Resumo:
Britain's labour force industrialised early. The industrial and service sectors already accounted for 40% of the labour force in 1381, and a substantial further shift of labour out of agriculture occurred between 1522 and 1700. From the early seventeenth century rising agricultural labour productivity underpinned steadily increasing employment in industry and services, so that by 1759 agriculture's share of the labour force had shrunk to 37% and industry's grown to 34%. Thereafter, industry's output acceleration during the Industrial Revolution owed more to gains in labour productivity consequent upon mechanisation than the expansion of employment.
Resumo:
The aim of this paper is to analyze the role of the pressure head, i.e., the difference of total pressure forces acting on the Indonesian seas waters from the western Pacific and the eastern Indian Ocean, in driving the Indonesian Throughflow (ITF) and in determining the total transport of the ITF. These questions have been discussed in the literature but no consensus has been reached. A regional model of the Indonesian seas circulation has been developed that properly resolves all major topographic features in the region. The results of model runs have been used to calculate all components of the overall momentum balance. The estimates disclose that the dynamical balance is primarily between the volume integrated Coriolis acceleration, pressure gradient and the area integral of local wind stress. It is shown that consideration of components of momentum balance in the direction of the outflow through the Indian Ocean port leads to the formulation of a diagnostic relation between total inflow transports due to the Mindanao and New Guinea Coastal Currents and the external pressure head, internal pressure head, bottom form stress, and area integrated wind stress. Based on this relation, it is concluded that the external pressure head is not the major driving force of the ITF, which is why there is no unique relation between the total transport of the ITF and the external pressure head. However, Wyrtki's suggestion to monitor the variability of the total transport of the ITF by measurement of the sea-surface-height difference between the western Pacific and the eastern Indian Ocean is validated.
Resumo:
This article reports on an experimental method to fully reconstruct laser-accelerated proton beam parameters called radiochromic film imaging spectroscopy (RIS). RIS allows for the characterization of proton beams concerning real and virtual source size, envelope- and microdivergence, normalized transverse emittance, phase space, and proton spectrum. This technique requires particular targets and a high resolution proton detector. Therefore thin gold foils with a microgrooved rear side were manufactured and characterized. Calibrated GafChromic radiochromic film (RCF) types MD-55, HS, and HD-810 in stack configuration were used as spatial and energy resolved film detectors. The principle of the RCF imaging spectroscopy was demonstrated at four different laser systems. This can be a method to characterize a laser system with respect to its proton-acceleration capability. In addition, an algorithm to calculate the spatial and energy resolved proton distribution has been developed and tested to get a better idea of laser-accelerated proton beams and their energy deposition with respect to further applications.
Resumo:
Proton bursts with a narrow spectrum at an energy of (2.8 +/- 0.3 MeV) are accelerated from sub-micron water spray droplets irradiated by high-intensity (similar to 5 x 10(19)W/cm(2)), high-contrast (similar to 10(10)), ultra-short (40 fs) laser pulses. The acceleration is preferentially in the laser propagation direction. The explosion dynamics is governed by a residual ps-scale laser pulse pedestal which "mildly" preheats the droplet and changes its density profile before the arrival of the high intensity laser pulse peak. As a result, the energetic electrons extracted from the modified target by the high-intensity part of the laser pulse establish an anisotropic electrostatic field which results in anisotropic Coulomb explosion and proton acceleration predominantly in the forward direction. Hydrodynamic simulations of the target pre-expansion and 3D particle-in-cell simulations of the measured energy and anisotropy of the proton emission have confirmed the proposed acceleration scenario. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4731712]
Resumo:
Background: As bending free-kicks becomes the norm in modern day soccer, implications for goalkeepers have largely been ignored. Although it has been reported that poor sensitivity to visual acceleration makes it harder for expert goalkeepers to perceptually judge where the curved free-kicks will cross the goal line, it is unknown how this affects the goalkeeper's actual movements.
Methodology/Principal Findings: Here, an in-depth analysis of goalkeepers' hand movements in immersive, interactive virtual reality shows that they do not fully account for spin-induced lateral ball acceleration. Hand movements were found to be biased in the direction of initial ball heading, and for curved free-kicks this resulted in biases in a direction opposite to those necessary to save the free-kick. These movement errors result in less time to cover a now greater distance to stop the ball entering the goal. These and other details of the interceptive behaviour are explained using a simple mathematical model which shows how the goalkeeper controls his movements online with respect to the ball's current heading direction. Furthermore our results and model suggest how visual landmarks, such as the goalposts in this instance, may constrain the extent of the movement biases.
Conclusions: While it has previously been shown that humans can internalize the effects of gravitational acceleration, these results show that it is much more difficult for goalkeepers to account for spin-induced visual acceleration, which varies from situation to situation. The limited sensitivity of the human visual system for detecting acceleration, suggests that curved free-kicks are an important goal-scoring opportunity in the game of soccer.
Resumo:
The optical properties of plasmonic semiconductor devices fabricated by focused ion beam (FIB) milling deteriorate because of the amorphisation of the semiconductor substrate. This study explores the effects of combining traditional 30 kV FIB milling with 5 kV FIB patterning to minimise the semiconductor damage and at the same time maintain high spatial resolution. The use of reduced acceleration voltages is shown to reduce the damage from higher energy ions on the example of fabrication of plasmonic crystals on semiconductor substrates leading to 7-fold increase in transmission. This effect is important for focused-ion beam fabrication of plasmonic structures integrated with photodetectors, light-emitting diodes and semiconductor lasers.