124 resultados para 90° holographic recording geometry


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to increase understanding of the mechanism and dominant drivers influencing phase separation during ram extrusion of calcium phosphate (CaP) paste for orthopaedic applications. The liquid content of extrudate was determined, and the flow of liquid and powder phases within the syringe barrel during extrusion were observed, subject to various extrusion parameters. Increasing the initial liquid-to-powder mass ratio, LPR, (0.4-0.45), plunger rate (5-20 mm/min), and tapering the barrel exit (45°-90°) significantly reduced the extent of phase separation. Phase separation values ranged from (6.22 ± 0.69 to 18.94 ± 0.69 %). However altering needle geometry had no significant effect on phase separation. From powder tracing and liquid content determination, static zones of powder and a non-uniform liquid distribution was observed within the barrel. Measurements of extrudate and paste LPR within the barrel indicated that extrudate LPR remained constant during extrusion, while LPR of paste within the barrel decreased steadily. These observations indicate the mechanism of phase separation was located within the syringe barrel. Therefore phase separation can be attributed to either; (1) the liquid being forced downstream by an increase in pore pressure as a result of powder consolidation due to the pressure exerted by the plunger or (2) the liquid being drawn from paste within the barrel, due to suction, driven by dilation of the solids matrix at the barrel exit. Differentiating between these two mechanisms is difficult; however results obtained suggest that suction is the dominant phase separation mechanism occurring during extrusion of CaP paste.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Sleep-disordered breathing is a common and serious feature of many paediatric conditions and is particularly a problem in children with Down syndrome. Overnight pulse oximetry is recommended as an initial screening test, but it is unclear how overnight oximetry results should be interpreted and how many nights should be recorded.

METHODS: This retrospective observational study evaluated night-to-night variation using statistical measures of repeatability for 214 children referred to a paediatric respiratory clinic, who required overnight oximetry measurements. This included 30 children with Down syndrome. We measured length of adequate trace, basal SpO2, number of desaturations (>4% SpO2 drop for >10 s) per hour ('adjusted index') and time with SpO2<90%. We classified oximetry traces into normal or abnormal based on physiology.

RESULTS: 132 out of 214 (62%) children had three technically adequate nights' oximetry, including 13 out of 30 (43%) children with Down syndrome. Intraclass correlation coefficient for adjusted index was 0.54 (95% CI 0.20 to 0.81) among children with Down syndrome and 0.88 (95% CI 0.84 to 0.91) for children with other diagnoses. Negative predictor value of a negative first night predicting two subsequent negative nights was 0.2 in children with Down syndrome and 0.55 in children with other diagnoses.

CONCLUSIONS: There is substantial night-to-night variation in overnight oximetry readings among children in all clinical groups undergoing overnight oximetry. This is a more pronounced problem in children with Down syndrome. Increasing the number of attempted nights' recording from one to three provides useful additional clinical information.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When a planet transits its host star, it blocks regions of the stellar surface from view; this causes a distortion of the spectral lines and a change in the line-of-sight (LOS) velocities, known as the Rossiter-McLaughlin (RM) effect. Since the LOS velocities depend, in part, on the stellar rotation, the RM waveform is sensitive to the star-planet alignment (which provides information on the system’s dynamical history). We present a new RM modelling technique that directly measures the spatially-resolved stellar spectrum behind the planet. This is done by scaling the continuum flux of the (HARPS) spectra by the transit light curve, and then subtracting the infrom the out-of-transit spectra to isolate the starlight behind the planet. This technique does not assume any shape for the intrinsic local profiles. In it, we also allow for differential stellar rotation and centre-to-limb variations in the convective blueshift. We apply this technique to HD 189733 and compare to 3D magnetohydrodynamic (MHD) simulations. We reject rigid body rotation with high confidence (>99% probability), which allows us to determine the occulted stellar latitudes and measure the stellar inclination. In turn, we determine both the sky-projected (λ ≈ −0.4 ± 0.2◦) and true 3D obliquity (ψ ≈ 7+12 −4 ◦ ). We also find good agreement with the MHD simulations, with no significant centre-to-limb variations detectable in the local profiles. Hence, this technique provides a new powerful tool that can probe stellar photospheres, differential rotation, determine 3D obliquities, and remove sky-projection biases in planet migration theories. This technique can be implemented with existing instrumentation, but will become even more powerful with the next generation of high-precision radial velocity spectrographs.