129 resultados para 2447: modelling and forecasting


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a novel method of audio-visual fusion for person identification where both the speech and facial modalities may be corrupted, and there is a lack of prior knowledge about the corruption. Furthermore, we assume there is a limited amount of training data for each modality (e.g., a short training speech segment and a single training facial image for each person). A new representation and a modified cosine similarity are introduced for combining and comparing bimodal features with limited training data as well as vastly differing data rates and feature sizes. Optimal feature selection and multicondition training are used to reduce the mismatch between training and testing, thereby making the system robust to unknown bimodal corruption. Experiments have been carried out on a bimodal data set created from the SPIDRE and AR databases with variable noise corruption of speech and occlusion in the face images. The new method has demonstrated improved recognition accuracy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biodegradable polymers, such as PLA (Polylactide), come from renewable resources like corn starch and if disposed of correctly, degrade and become harmless to the ecosystem making them attractive alternatives to petroleum based polymers. PLA in particular is used in a variety of applications including medical devices, food packaging and waste disposal packaging. However, the industry faces challenges in melt processing of PLA due to its poor thermal stability which is influenced by processing temperatures and shearing.
Identification and control of suitable processing conditions is extremely challenging, usually relying on trial and error, and often sensitive to batch to batch variations. Off-line assessment in a lab environment can result in high scrap rates, long lead times and lengthy and expensive process development. Scrap rates are typically in the region of 25-30% for medical grade PLA costing between €2000-€5000/kg.
Additives are used to enhance material properties such as mechanical properties and may also have a therapeutic role in the case of bioresorbable medical devices, for example the release of calcium from orthopaedic implants such as fixation screws promotes healing. Additives can also reduce the costs involved as less of the polymer resin is required.
This study investigates the scope for monitoring, modelling and optimising processing conditions for twin screw extrusion of PLA and PLA w/calcium carbonate to achieve desired material properties. A DAQ system has been constructed to gather data from a bespoke measurement die comprising melt temperature; pressure drop along the length of the die; and UV-Vis spectral data which is shown to correlate to filler dispersion. Trials were carried out under a range of processing conditions using a Design of Experiments approach and samples were tested for mechanical properties, degradation rate and the release rate of calcium. Relationships between recorded process data and material characterisation results are explored.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stiffness values in geotechnical structures can range over many orders of magnitude for relatively small operational strains. The typical strain levels where soil stiffness changes most dramatically is in the range 0.01-0.1%, however soils do not exhibit linear stress-strain behaviour at small strains. Knowledge of the in situ stiffness at small strain is important in geotechnical numerical modelling and design. The stress-strain regime of cut slopes is complex, as we have different principle stress directions at different positions along the potential failure plane. For example, loading may be primarily in extension near the toe of the slope, while compressive loading is predominant at the crest of a slope. Cuttings in heavily overconsolidated clays are known to be susceptible to progressive failure and subsequent strain softening, in which progressive yielding propagates from the toe towards the crest of the slope over time. In order to gain a better understanding of the rate of softening it would be advantageous to measure changes in small strain stiffness in the field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The UK’s transport infrastructure is one of the most heavily used in the world. The performance of these networks is critically dependent on the performance of cutting and embankment slopes which make up £20B of the £60B asset value of major highway infrastructure alone. The rail network in particular is also one of the oldest in the world: many of these slopes are suffering high incidents of instability (increasing with time). This paper describes the development of a fundamental understanding of earthwork material and system behaviour, through the systematic integration of research across a range of spatial and temporal scales. Spatially these range from microscopic studies of soil fabric, through elemental materials behaviour to whole slope modelling and monitoring and scaling up to transport networks. Temporally, historical and current weather event sequences are being used to understand and model soil deterioration processes, and climate change scenarios to examine their potential effects on slope performance in futures up to and including the 2080s. The outputs of this research are being mapped onto the different spatial and temporal scales of infrastructure slope asset management to inform the design of new slopes through to changing the way in which investment is made into aging assets. The aim ultimately is to help create a more reliable, cost effective, safer and more resilient transport system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To evaluate the performance of the co-channel transmission based communication, we propose a new metric for area spectral efficiency (ASE) of interference limited ad-hoc network by assuming that the nodes are randomly distributed according to a Poisson point processes (PPP). We introduce a utility function, U = ASE/delay and derive the optimal ALOHA transmission probability p and the SIR threshold τ that jointly maximize the ASE and minimize the local delay. Finally, numerical results have been conducted to confirm that the joint optimization based on the U metric achieves a significant performance gain compared to conventional systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an approach to develop an intelligent digital mock-up (DMU) through integration of design and manufacturing disciplines to enable a better understanding of assembly related issues during design evolution. The intelligent DMU will contain tolerance information related to manufacturing capabilities so it can be used as a source for assembly simulations of realistic models to support the manufacturing decision making process within the design domain related to tolerance build ups. A literature review of the contributing research areas is presented, from which identification of the need for an intelligent DMU has been developed. The proposed methodology including the applications of cellular modelling and potential features of the intelligent DMU are presented and explained. Finally a conclusion examines the work to date and the future work to achieve an intelligent DMU.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of the latest generation of wide-body carbon-fibre composite passenger aircraft has heralded a new era in the utilisation of these materials. The premise of superior specific strength and stiffness, corrosion and fatigue resistance, is tempered by high development costs, slow production rates and lengthy and expensive certification programmes. Substantial effort is currently being directed towards the development of new modelling and simulation tools, at all levels of the development cycle, to mitigate these shortcomings. One of the primary challenges is to reduce the extent of physical testing, in the certification process, by adopting a ‘certification by simulation’ approach. In essence, this aspirational objective requires the ability to reliably predict the evolution and progression of damage in composites. The aerospace industry has been at the forefront of developing advanced composites modelling tools. As the automotive industry transitions towards the increased use of composites in mass-produced vehicles, similar challenges in the modelling of composites will need to be addressed, particularly in the reliable prediction of crashworthiness. While thermoset composites have dominated the aerospace industry, thermoplastics composites are likely to emerge as the preferred solution for meeting the high-volume production demands of passenger road vehicles. This keynote presentation will outline recent progress and current challenges in the development of finite-element-based predictive modelling tools for capturing impact damage, residual strength and energy absorption capacity of thermoset and thermoplastic composites for crashworthiness assessments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coastal and estuarine landforms provide a physical template that not only accommodates diverse ecosystem functions and human activities, but also mediates flood and erosion risks that are expected to increase with climate change. In this paper, we explore some of the issues associated with the conceptualisation and modelling of coastal morphological change at time and space scales relevant to managers and policy makers. Firstly, we revisit the question of how to define the most appropriate scales at which to seek quantitative predictions of landform change within an age defined by human interference with natural sediment systems and by the prospect of significant changes in climate and ocean forcing. Secondly, we consider the theoretical bases and conceptual frameworks for determining which processes are most important at a given scale of interest and the related problem of how to translate this understanding into models that are computationally feasible, retain a sound physical basis and demonstrate useful predictive skill. In particular, we explore the limitations of a primary scale approach and the extent to which these can be resolved with reference to the concept of the coastal tract and application of systems theory. Thirdly, we consider the importance of different styles of landform change and the need to resolve not only incremental evolution of morphology but also changes in the qualitative dynamics of a system and/or its gross morphological configuration. The extreme complexity and spatially distributed nature of landform systems means that quantitative prediction of future changes must necessarily be approached through mechanistic modelling of some form or another. Geomorphology has increasingly embraced so-called ‘reduced complexity’ models as a means of moving from an essentially reductionist focus on the mechanics of sediment transport towards a more synthesist view of landform evolution. However, there is little consensus on exactly what constitutes a reduced complexity model and the term itself is both misleading and, arguably, unhelpful. Accordingly, we synthesise a set of requirements for what might be termed ‘appropriate complexity modelling’ of quantitative coastal morphological change at scales commensurate with contemporary management and policy-making requirements: 1) The system being studied must be bounded with reference to the time and space scales at which behaviours of interest emerge and/or scientific or management problems arise; 2) model complexity and comprehensiveness must be appropriate to the problem at hand; 3) modellers should seek a priori insights into what kind of behaviours are likely to be evident at the scale of interest and the extent to which the behavioural validity of a model may be constrained by its underlying assumptions and its comprehensiveness; 4) informed by qualitative insights into likely dynamic behaviour, models should then be formulated with a view to resolving critical state changes; and 5) meso-scale modelling of coastal morphological change should reflect critically on the role of modelling and its relation to the observable world.