194 resultados para virology
Resumo:
The production of functional nidovirus replication-transcription complexes involves extensive proteolytic processing by virus-encoded proteases. In this study, we characterized the viral main protease (Mpro) of the type species, White bream virus (WBV), of the newly established genus Bafinivirus (order Nidovirales, family Coronaviridae, subfamily Torovirinae). Comparative sequence analysis and mutagenesis data confirmed that the WBV Mpro is a picornavirus 3C-like serine protease that uses a Ser-His-Asp catalytic triad embedded in a predicted two-ß-barrel fold, which is extended by a third domain at its C terminus. Bacterially expressed WBV Mpro autocatalytically released itself from flanking sequences and was able to mediate proteolytic processing in trans. Using N-terminal sequencing of autoproteolytic processing products we tentatively identified Gln?(Ala, Thr) as a substrate consensus sequence. Mutagenesis data provided evidence to suggest that two conserved His and Thr residues are part of the S1 subsite of the enzyme's substrate-binding pocket. Interestingly, we observed two N-proximal and two C-proximal autoprocessing sites in the bacterial expression system. The detection of two major forms of Mpro, resulting from processing at two different N-proximal and one C-proximal site, in WBV-infected epithelioma papulosum cyprini cells confirmed the biological relevance of the biochemical data obtained in heterologous expression systems. To our knowledge, the use of alternative Mpro autoprocessing sites has not been described previously for other nidovirus Mpro domains. The data presented in this study lend further support to our previous conclusion that bafiniviruses represent a distinct group of viruses that significantly diverged from other phylogenetic clusters of the order Nidovirales.
Resumo:
The "phiKMV-like viruses" comprise an important genus of T7 related phages infecting Pseudomonas aeruginosa. The genomes of these bacteriophages have localized single-strand interruptions (nicks), a distinguishing genomic trait previously thought to be unique for T5 related coliphages. Analysis of this feature in the newly sequenced phage fkF77 shows all four nicks to be localized on the non-coding DNA strand. They are present with high frequencies within the phage population and are introduced into the phage DNA at late stages of the lytic cycle. The general consensus sequence in the nicks (5'-CGACxxxxxCCTAoh pCTCCGG-3') was shown to be common among all phiKMV-related phages.
Resumo:
Acute respiratory distress syndrome (ARDS) is a severe form of acute lung injury. It is a response to various diseases of variable etiology, including SARS-CoV infection. To date, a comprehensive study of the genomic physiopathology of ARDS (and SARS) is lacking, primarily due to the difficulty of finding suitable materials to study the disease process at a tissue level (instead of blood, sputa or swaps). Hereby we attempt to provide such study by analyzing autopsy lung samples from patient who died of SARS and showed different degrees of severity of the pulmonary involvement. We performed real-time quantitative PCR analysis of 107 genes with functional roles in inflammation, coagulation, fibrosis and apoptosis: some key genes were confirmed at a protein expression level by immunohistochemistry and correlated to the degree of morphological severity present in the individual samples analyzed. Significant expression levels were identified for ANPEP (a receptor for CoV), as well as inhibition of the STAT1 pathway, IFNs production and CXCL10 (a T-cell recruiter). Other genes unassociated to date with ARDS/SARS include C1Qb, C5R1, CASP3, CASP9, CD14, CD68, FGF7, HLA-DRA, ICF1, IRF3, MALAT-1, MSR1, NFIL3, SLPI, USP33, CLC, GBP1 and TACI. As a result, we proposed to therapeutically target some of these genes with compounds such as ANPEP inhibitors, SLPI and dexamethasone. Ultimately, this study may serve as a model for future, tissue-based analyses of fibroinflammatory conditions affecting the lung. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Cells expressing human papillomavirus type 16 (HPV-16) E6 and E7 proteins exhibit deregulation of G(2)/M genes, allowing bypass of DNA damage arrest signals. Normally, cells with DNA damage that override the G(2) damage checkpoint would precociously enter mitosis and ultimately face mitotic catastrophe and apoptotic cell death. However, E6/E7-expressing cells (E6/E7 cells) have the ability to enter and exit mitosis in the presence of DNA damage and continue with the next round of the cell cycle. Little is known about the mechanism that allows these cells to gain entry into and exit from mitosis. Here, we show that in the presence of DNA damage, E6/E7 cells have elevated levels of cyclin B, which would allow entry into mitosis. Also, as required for exit from mitosis, cyclin B is degraded in these cells, permitting initiation of the next round of DNA synthesis and cell cycle progression. Proteasomal degradation of cyclin B by anaphase-promoting complex/cyclosome (APC/C) is, in part, due to elevated levels of the E2-conjugating enzyme, Ubch10, and the substrate recognition protein, Cdc20, of APC/C. Also, in E6/E7 cells with DNA damage, while Cdc20 is complexed with BubR1, indicating an active checkpoint, it is also present in complexes free of BubR1, presumably allowing APC/C activity and slippage through the checkpoint.
Resumo:
Background: Although horizontal gene transfer plays a pivotal role in bacteriophage evolution, many lytic phage genomes are clearly shaped by vertical evolution. We investigated the influence of minor genomic deletions and insertions on various phage-related phenotypic and serological properties. Findings. We collected ten different isolates of Pseudomonas aeruginosa bacteriophage KMV. All sequenced genomes (42-43 kb, long direct terminal repeats) are nearly identical, which intuitively implied strongly similar infections cycles. However, their latent periods vary between 21 and 28 minutes and they are able to lyse between 5 and 58% of a collection of 107 clinical P. aeruginosa strains. We also noted that phages with identical tail structures displayed profound differences in host spectra. Moreover, point mutations in tail and spike proteins were sufficient to evade neutralization by two phage-specific antisera, isolated from rabbits. Conclusion: Although all analyzed phages are 83-97% identical at the genome level, they display a surprisingly large variation in various phenotypic properties. The small overlap in host spectrum and their ability to readily escape immune defences against a nearly identical phage are promising elements for the application of these phages in phage therapy. © 2011 Ceyssens et al; licensee BioMed Central Ltd.
--------------------------------------------------------------------------------
Reaxys Database Information|
--------------------------------------------------------------------------------
Resumo:
Background Human respiratory syncytial virus (RSV) causes severe respiratory disease in infants. Airway epithelial cells are the principle targets of RSV infection. However, the mechanisms by which it causes disease are poorly understood. Most RSV pathogenesis data are derived using laboratory-adapted prototypic strains. We hypothesized that such strains may be poorly representative of recent clinical isolates in terms of virus/host interactions in primary human bronchial epithelial cells (PBECs). Methods To address this hypothesis, we isolated three RSV strains from infants hospitalized with bronchiolitis and compared them with the prototypic RSV A2 in terms of cytopathology, virus growth kinetics and chemokine secretion in infected PBEC monolayers. Results RSV A2 rapidly obliterated the PBECs, whereas the clinical isolates caused much less cytopathology. Concomitantly, RSV A2 also grew faster and to higher titers in PBECs. Furthermore, dramatically increased secretion of IP-10 and RANTES was evident following A2 infection compared with the clinical isolates. Conclusions The prototypic RSV strain A2 is poorly representative of recent clinical isolates in terms of cytopathogenicity, viral growth kinetics and pro-inflammatory responses induced following infection of PBEC monolayers. Thus, the choice of RSV strain may have important implications for future RSV pathogenesis studies.
Resumo:
There is a need to provide rapid, sensitive, and often high throughput detection of pathogens in diagnostic virology. Viral gastroenteritis is a serious health issue often leading to hospitalization in the young, the immunocompromised and the elderly. The common causes of viral gastroenteritis include rotavirus, norovirus (genogroups I and II), astrovirus, and group F adenoviruses (serotypes 40 and 41). This article describes the work-up of two internally controlled multiplex, probe-based PCR assays and reports on the clinical validation over a 3-year period, March 2007 to February 2010. Multiplex assays were developed using a combination of TaqMan™ and minor groove binder (MGB™) hydrolysis probes. The assays were validated using a panel of 137 specimens, previously positive via a nested gel-based assay. The assays had improved sensitivity for adenovirus, rotavirus, and norovirus (97.3% vs. 86.1%, 100% vs. 87.8%, and 95.1% vs. 79.5%, respectively) and also more specific for targets adenovirus, rotavirus, and norovirus (99% vs. 95.2%, 100% vs. 93.6%, and 97.9% vs. 92.3%, respectively). For the specimens tested, both assays had equal sensitivity and specificity for astrovirus (100%). Overall the probe-based assays detected 16 more positive specimens than the nested gel-based assay. Post-introduction to the routine diagnostic service, a total of 9,846 specimens were processed with multiplex 1 and 2 (7,053 pediatric, 2,793 adult) over the 3-year study period. This clinically validated, probe-based multiplex testing algorithm allows highly sensitive and timely diagnosis of the four most prominent causes of viral gastroenteritis.
Resumo:
Bursaphelenchus xylophilus is the nematode responsible for a devastating epidemic of pine wilt disease in Asia and Europe, and represents a recent, independent origin of plant parasitism in nematodes, ecologically and taxonomically distinct from other nematodes for which genomic data is available. As well as being an important pathogen, the B. xylophilus genome thus provides a unique opportunity to study the evolution and mechanism of plant parasitism. Here, we present a high-quality draft genome sequence from an inbred line of B. xylophilus, and use this to investigate the biological basis of its complex ecology which combines fungal feeding, plant parasitic and insect-associated stages. We focus particularly on putative parasitism genes as well as those linked to other key biological processes and demonstrate that B. xylophilus is well endowed with RNA interference effectors, peptidergic neurotransmitters (including the first description of ins genes in a parasite) stress response and developmental genes and has a contracted set of chemosensory receptors. B. xylophilus has the largest number of digestive proteases known for any nematode and displays expanded families of lysosome pathway genes, ABC transporters and cytochrome P450 pathway genes. This expansion in digestive and detoxification proteins may reflect the unusual diversity in foods it exploits and environments it encounters during its life cycle. In addition, B. xylophilus possesses a unique complement of plant cell wall modifying proteins acquired by horizontal gene transfer, underscoring the impact of this process on the evolution of plant parasitism by nematodes. Together with the lack of proteins homologous to effectors from other plant parasitic nematodes, this confirms the distinctive molecular basis of plant parasitism in the Bursaphelenchus lineage. The genome sequence of B. xylophilus adds to the diversity of genomic data for nematodes, and will be an important resource in understanding the biology of this unusual parasite.
Resumo:
Background: Rift Valley fever (RVF) is an emerging vector-borne zoonotic disease that represents a threat to human health, animal health, and livestock production, particularly in Africa. The epidemiology of RVF is not well understood, so that forecasting RVF outbreaks and carrying out efficient and timely control measures remains a challenge. Various epidemiological modeling tools have been used to increase knowledge on RVF epidemiology and to inform disease management policies.
Resumo:
Measles virus (MV) is highly infectious, and has long been thought to enter the host by infecting epithelial cells of the respiratory tract. However, epithelial cells do not express signaling lymphocyte activation molecule (CD150), which is the high-affinity cellular receptor for wild-type MV strains. We have generated a new recombinant MV strain expressing enhanced green fluorescent protein (EGFP), based on a wild-type genotype B3 virus isolate from Khartoum, Sudan (KS). Cynomolgus macaques were infected with a high dose of rMV(KS)EGFP by aerosol inhalation to ensure that the virus could reach the full range of potential target cells throughout the entire respiratory tract. Animals were euthanized 2, 3, 4 or 5 days post-infection (d.p.i., n?=?3 per time point) and infected (EGFP(+)) cells were identified at all four time points, albeit at low levels 2 and 3 d.p.i. At these earliest time points, MV-infected cells were exclusively detected in the lungs by fluorescence microscopy, histopathology and/or virus isolation from broncho-alveolar lavage cells. On 2 d.p.i., EGFP(+) cells were phenotypically typed as large mononuclear cells present in the alveolar lumen or lining the alveolar epithelium. One to two days later, larger clusters of MV-infected cells were detected in bronchus-associated lymphoid tissue (BALT) and in the tracheo-bronchial lymph nodes. From 4 d.p.i. onward, MV-infected cells were detected in peripheral blood and various lymphoid tissues. In spite of the possibility for the aerosolized virus to infect cells and lymphoid tissues of the upper respiratory tract, MV-infected cells were not detected in either the tonsils or the adenoids until after onset of viremia. These data strongly suggest that in our model MV entered the host at the alveolar level by infecting macrophages or dendritic cells, which traffic the virus to BALT or regional lymph nodes, resulting in local amplification and subsequent systemic dissemination by viremia.
Resumo:
The global increase in measles vaccination has resulted in a significant reduction of measles mortality. The standard route of administration for the live-attenuated measles virus (MV) vaccine is subcutaneous injection, although alternative needle-free routes, including aerosol delivery, are under investigation. In vitro, attenuated MV has a much wider tropism than clinical isolates, as it can use both CD46 and CD150 as cellular receptors. To compare the in vivo tropism of attenuated and pathogenic MV, we infected cynomolgus macaques with pathogenic or attenuated recombinant MV expressing enhanced green fluorescent protein (GFP) (strains IC323 and Edmonston, respectively) via the intratracheal or aerosol route. Surprisingly, viral loads and cellular tropism in the lungs were similar for the two viruses regardless of the route of administration, and CD11c-positive cells were identified as the major target population. However, only the pathogenic MV caused significant viremia, which resulted in massive virus replication in B and T lymphocytes in lymphoid tissues and viral dissemination to the skin and the submucosa of respiratory epithelia. Attenuated MV was rarely detected in lymphoid tissues, and when it was, only in isolated infected cells. Following aerosol inhalation, attenuated MV was detected at early time points in the upper respiratory tract, suggesting local virus replication. This contrasts with pathogenic MV, which invaded the upper respiratory tract only after the onset of viremia. This study shows that despite in vitro differences, attenuated and pathogenic MV show highly similar in vivo tropism in the lungs. However, systemic spread of attenuated MV is restricted.
Resumo:
The lymphotropic and myelotropic nature of wild-type measles virus (wt-MV) is well recognized, with dendritic cells and lymphocytes expressing the MV receptor CD150 mediating systemic spread of the virus. Infection of respiratory epithelial cells has long been considered crucial for entry of MV into the body. However, the lack of detectable CD150 on these cells raises the issue of their importance in the pathogenesis of measles. This study utilized a combination of in vitro, ex vivo and in vivo model systems to characterize the susceptibility of epithelial cells to wt-MV of proven pathogenicity. Low numbers of MV-infected epithelial cells in close proximity to underlying infected lymphocytes or myeloid cells suggested infection via the basolateral side of the epithelium in the macaque model. In primary cultures of human bronchial epithelial cells, foci of MV-infected cells were only observed following infection via the basolateral cell surface. The extent of infection in primary cells was enhanced both in vitro and in ex vivo cornea rim tissue by disrupting the integrity of the cells prior to the application of virus. This demonstrated that, whilst epithelial cells may not be the primary target cells for wt-MV, areas of epithelium in which tight junctions are disrupted can become infected using high m.o.i. The low numbers of MV-infected epithelial cells observed in vivo in conjunction with the absence of infectious virus release from infected primary cell cultures suggest that epithelial cells have a peripheral role in MV transmission.
Resumo:
The Jeryl Lynn (JL) vaccine against mumps virus (MuV) contains two components, MuV(JL5) and MuV(JL2), which differ by over 400 nt. Due to the occurrence of bias in the direction of mutation, these differences and those found in nucleotide sequences of different isolates of the minor component in the vaccine (MuV(JL2)) might be due to the effect of ADAR-like deaminases on MuV grown in tissue-cultured cells. A molecular clone Of MuV(JL2) (pMuV(JL2)) and MuV(JL2) -specific helper plasmids were constructed in order to investigate molecular interactions between MuV(JL5) and MuV(JL2), to augment the existing molecular clone Of MuV(JL)5 (pMuV(JL5)) and MuV(JL5) -specific helper plasmids. Genome and mRNA termini Of MuV(JL2) were characterized, and an unusual oligo-G insertion transcriptional editing event was detected near the F mRNA polyadenylation site of MuV(JL2), but not Of MuV(JL5). Genes encoding glycoproteins of rMuV(JL2) and rMuV(JL5) have been exchanged to characterize the oligo-G insertion, which associated with the specific sequence of the IF gene of MuV(JL2) and not with any other genes or the RNA-dependent RNA polymerase of strain MuV(JL2). The results indicate that a single G-to-A sequence change obliterates the co-transcriptional editing of the F mRNA and that this oligo-G insertion does not affect the growth of the virus.
Resumo:
Recently, numerous large-scale mumps outbreaks have occurred in vaccinated populations. Clinical isolates sequenced from these outbreaks have invariably been of genotypes distinct from those of vaccine viruses, raising concern that certain mumps virus strains may escape vaccine-induced immunity. To investigate this concern, sera obtained from children 6 weeks after receipt of measles, mumps, and rubella (MMR) vaccine were tested for the ability to neutralize a carefully selected group of genetically diverse mumps virus strains. Although the geometric mean neutralizing antibody titer of the sera was lower against some virus strains than others, all viruses were readily neutralized, arguing against immune escape.