119 resultados para vipi wave
Resumo:
A theoretical study is presented of the nonlinear amplitude modulation of waves propagating in unmagnetized plasmas contaminated by charged dust particles. Distinct well-known dusty plasma modes are explicitly considered, namely, the dust-acoustic wave, the dust-ion acoustic wave, and transverse dust-lattice waves. Using a multiple-scale technique, a nonlinear Schrodinger-type equation is derived, describing the evolution of the wave amplitude. A stability analysis reveals the possibility for modulational instability to occur, possibly leading to the formation of different types of envelope-localized excitations (solitary waves), under conditions which depend on the wave dispersion laws and intrinsic dusty plasma parameters.
Resumo:
The parametric interaction between large amplitude whistlers and ponderomotively driven quasistationary density perturbations in plasmas is considered. A cubic nonlinear Schrodinger equation is derived and then solved analytically to show the occurrence of modulational instability as well as the existence of bright and dark envelope solitons, which are referred to as whistlerons. Explicit whistleron profiles are presented and the relevance to space and laboratory plasmas is discussed. (C) 2005 American Institute of Physics.
Resumo:
The Nonlinear self-modulation of dust acoustic waves is studied in the presence of non-thermal (non-Maxwellian) ion and electron populations. By employing a multiple scale technique, a nonlinear Schrodinger-type equation (NLSE) is derived for the wave amplitude. The influence of non-thermality, in addition to obliqueness (between the propagation and modulation directions), on the conditions for modulational instability to occur is discussed. Different types of localized solutions (envelope excitations) which may possibly occur are discussed, and the dependence of their characteristics oil physical parameters is traced. The ion deviation from a Maxwellian distribution comes out to be more important than the electron analogous deviation alone. Both yield a de-stabilizing effect oil (the amplitude of) DAWs propagating in a dusty plasma with negative dust grains, and thus favour the formation of bright- (rather than dark-) type envelope structures, (solitons) in the plasma. A similar tendency towards amplitude de-stabilization is found for the ease of the presence of positively charged dust in the plasma.
Resumo:
A dusty plasma crystalline configuration with equal charge dust grains and mass is considered. Both charge and mass of each dust species are taken to be constant. Two differential equations for a two-dimensional hexagonal crystal on the basis of a Yukawa-type potential energy and a
Resumo:
The amplitude modulation of dust lattice waves (DLWs) propagating in a two-dimensional hexagonal dust crystal is investigated in a continuum approximation, accounting for the effect of dust charge polarization (dressed interactions). A dusty plasma crystalline configuration with constant dust grain charge and mass is considered. The dispersion relation and the group velocity for DLWs are determined for wave propagation in both longitudinal and transverse directions. The reductive perturbation method is used to derive a (2+1)-dimensional nonlinear Schrodinger equation (NLSE). New expressions for the coefficients of the NLSE are derived and compared, for a Yukawa-type potential energy and for a
Resumo:
The nonlinear amplitude modulation of electromagnetic waves propagating in pair plasmas, e.g., electron-positron or fullerene pair-ion plasmas, as well as three-component pair plasmas, e.g., electron-positron-ion plasmas or doped (dusty) fullerene pair-ion plasmas, assuming wave propagation in a direction perpendicular to the ambient magnetic field, obeying the ordinary (O-) mode dispersion characteristics. Adopting a multiple scales (reductive perturbation) technique, a nonlinear Schrodinger-type equation is shown to govern the modulated amplitude of the magnetic field (perturbation). The conditions for modulation instability are investigated, in terms of relevant parameters. It is shown that localized envelope modes (envelope solitons) occur, of the bright- (dark-) type envelope solitons, i.e., envelope pulses (holes, respectively), for frequencies below (above) an explicit threshold. Long wavelength waves with frequency near the effective pair plasma frequency are therefore unstable, and may evolve into bright solitons, while higher frequency (shorter wavelength) waves are stable, and may propagate as envelope holes.(c) 2007 American Institute of Physics.
Resumo:
A study is presented of the nonlinear self-modulation of low-frequency electrostatic (dust acoustic) waves propagating in a dusty plasma, in the presence of a superthermal ion (and Maxwellian electron) background. A kappa-type superthermal distribution is assumed for the ion component, accounting for an arbitrary deviation from Maxwellian equilibrium, parametrized via a real parameter kappa. The ordinary Maxwellian-background case is recovered for kappa ->infinity. By employing a multiple scales technique, a nonlinear Schrodinger-type equation (NLSE) is derived for the electric potential wave amplitude. Both dispersion and nonlinearity coefficients of the NLSE are explicit functions of the carrier wavenumber and of relevant physical parameters (background species density and temperature, as well as nonthermality, via kappa). The influence of plasma background superthermality on the growth rate of the modulational instability is discussed. The superthermal feature appears to control the occurrence of modulational instability, since the instability window is strongly modified. Localized wavepackets in the form of either bright-or dark-type envelope solitons, modeling envelope pulses or electric potential holes (voids), respectively, may occur. A parametric investigation indicates that the structural characteristics of these envelope excitations (width, amplitude) are affected by superthermality, as well as by relevant plasma parameters (dust concentration, ion temperature).
Resumo:
The propagation of nonlinear dust-lattice waves in a two-dimensional hexagonal crystal is investigated. Transverse (off-plane) dust grain oscillatory motion is considered in the form of a backward propagating wave packet whose linear and nonlinear characteristics are investigated. An evolution equation is obtained for the slowly varying amplitude of the first (fundamental) harmonic by making use of a two-dimensional lattice multiple scales technique. An analysis based on the continuum approximation (spatially extended excitations compared to the lattice spacing) shows that wave packets will be modulationally stable and that dark-type envelope solitons (density holes) may occur in the long wavelength region. Evidence is provided of modulational instability and of the occurrence of bright-type envelopes (pulses) at shorter wavelengths. The role of second neighbor interactions is also investigated and is shown to be rather weak in determining the modulational stability region. The effect of dissipation, assumed negligible in the algebra throughout the article, is briefly discussed.
Resumo:
Total cross sections for electron capture are calculated for collisions of fast protons and a-particles with atomic hydrogen. The distorted-wave impulse approximation is applied over the energy range 10-1500 keV/u. State-selective results are given for the 1s, 2s and 2p levels. Both the post and prior forms of the model are calculated and compared with results from other theories and experimental measurements. In general the model performs very well in comparison with experiment over this energy range though discrepancies arise at lower energies.
Resumo:
Mode-mixing of coherent excitations of a trapped Bose-Einstein condensate is modeled using the Bogoliubov approximation. Calculations are presented for second-harmonic generation between the two lowest-lying even-parity m=0 modes in an oblate spheroidal trap. Hybridization of the modes of the breather (l=0) and surface (l=4) states leads to the formation of a Bogoliubov dark state near phase-matching resonance so that a single mode is coherently populated. Efficient harmonic generation requires a strong coupling rate, sharply-defined and well-separated frequency spectrum, and good phase matching. We find that in all three respects the quantal results are significantly different from hydrodynamic predictions. Typically the second-harmonic conversion rate is half that given by an equivalent hydrodynamic estimate.