116 resultados para spontaneous noise


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The implementation of a dipole antenna co-designed and monolithically integrated with a low noise amplifier (LNA) on low resistivity Si substrate (20 Omega . cm) manufactured in 0.35 mu m commercial SiGe HBT process with f(T)/f(max) of 170 GHz and 250 GHz is investigated theoretically and experimentally. An air gap is introduced between the chip and a reflective ground plane, leading to substantial improvements in efficiency and gain. Moreover, conjugate matching conditions between the antenna and the LNA are exploited, enhancing power transfer between without any additional matching circuit. A prototype is fabricated and tested to validate the performance. The measured 10-dB gain of the standalone LNA is centered at 58 GHz with a die size of 0.7 mm x 0.6 mm including all pads. The simulated results showed antenna directivity of 5.1 dBi with efficiency higher than 70%. After optimization, the co-designed LNA-Antenna chip with a die size of 3 mm x 2.8 mm was characterized in anechoic chamber environment. A maximum gain of higher than 12 dB was obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a new approach to speech enhancement from single-channel measurements involving both noise and channel distortion (i.e., convolutional noise), and demonstrates its applications for robust speech recognition and for improving noisy speech quality. The approach is based on finding longest matching segments (LMS) from a corpus of clean, wideband speech. The approach adds three novel developments to our previous LMS research. First, we address the problem of channel distortion as well as additive noise. Second, we present an improved method for modeling noise for speech estimation. Third, we present an iterative algorithm which updates the noise and channel estimates of the corpus data model. In experiments using speech recognition as a test with the Aurora 4 database, the use of our enhancement approach as a preprocessor for feature extraction significantly improved the performance of a baseline recognition system. In another comparison against conventional enhancement algorithms, both the PESQ and the segmental SNR ratings of the LMS algorithm were superior to the other methods for noisy speech enhancement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a new approach to single-channel speech enhancement involving both noise and channel distortion (i.e., convolutional noise). The approach is based on finding longest matching segments (LMS) from a corpus of clean, wideband speech. The approach adds three novel developments to our previous LMS research. First, we address the problem of channel distortion as well as additive noise. Second, we present an improved method for modeling noise. Third, we present an iterative algorithm for improved speech estimates. In experiments using speech recognition as a test with the Aurora 4 database, the use of our enhancement approach as a preprocessor for feature extraction significantly improved the performance of a baseline recognition system. In another comparison against conventional enhancement algorithms, both the PESQ and the segmental SNR ratings of the LMS algorithm were superior to the other methods for noisy speech enhancement. Index Terms: corpus-based speech model, longest matching segment, speech enhancement, speech recognition

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To support the endeavor of creating intelligent interfaces between computers and humans the use of training materials based on realistic human-human interactions has been recognized as a crucial task. One of the effects of the creation of these databases is an increased realization of the importance of often overlooked social signals and behaviours in organizing and orchestrating our interactions. Laughter is one of these key social signals; its importance in maintaining the smooth flow of human interaction has only recently become apparent in the embodied conversational agent domain. In turn, these realizations require training data that focus on these key social signals. This paper presents a database that is well annotated and theoretically constructed with respect to understanding laughter as it is used within human social interaction. Its construction, motivation, annotation and availability are presented in detail in this paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is shown that under certain conditions it is possible to obtain a good speech estimate from noise without requiring noise estimation. We study an implementation of the theory, namely wide matching, for speech enhancement. The new approach performs sentence-wide joint speech segment estimation subject to maximum recognizability to gain noise robustness. Experiments have been conducted to evaluate the new approach with variable noises and SNRs from -5 dB to noise free. It is shown that the new approach, without any estimation of the noise, significantly outperformed conventional methods in the low SNR conditions while retaining comparable performance in the high SNR conditions. It is further suggested that the wide matching and deep learning approaches can be combined towards a highly robust and accurate speech estimator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experience continuously imprints on the brain at all stages of life. The traces it leaves behind can produce perceptual learning [1], which drives adaptive behavior to previously encountered stimuli. Recently, it has been shown that even random noise, a type of sound devoid of acoustic structure, can trigger fast and robust perceptual learning after repeated exposure [2]. Here, by combining psychophysics, electroencephalography (EEG), and modeling, we show that the perceptual learning of noise is associated with evoked potentials, without any salient physical discontinuity or obvious acoustic landmark in the sound. Rather, the potentials appeared whenever a memory trace was observed behaviorally. Such memory-evoked potentials were characterized by early latencies and auditory topographies, consistent with a sensory origin. Furthermore, they were generated even on conditions of diverted attention. The EEG waveforms could be modeled as standard evoked responses to auditory events (N1-P2) [3], triggered by idiosyncratic perceptual features acquired through learning. Thus, we argue that the learning of noise is accompanied by the rapid formation of sharp neural selectivity to arbitrary and complex acoustic patterns, within sensory regions. Such a mechanism bridges the gap between the short-term and longer-term plasticity observed in the learning of noise [2, 4-6]. It could also be key to the processing of natural sounds within auditory cortices [7], suggesting that the neural code for sound source identification will be shaped by experience as well as by acoustics.