219 resultados para skin adnexal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, we used optical coherence tomography (OCT) to extensively investigate, for the first time, the effect that microneedle (MN) geometry (MN height, and MN interspacing) and force of application have upon penetration characteristics of soluble poly(methylvinylether-co-maleic anhydride, PMVE/MA) MN arrays into neonatal porcine skin in vitro. The results from OCT investigations were then used to design optimal and suboptimal MN-based drug delivery systems and evaluate their drug delivery profiles cross full thickness and dermatomed neonatal porcine skin in vitro. It was found that increasing the force used for MN application resulted in a significant increase in the depth of penetration achieved within neonatal porcine skin. For example, MN of 600 µm height penetrated to a depth of 330 µm when inserted at a force of 4.4 N/array, while the penetration increased significantly to a depth of 520 µm, when the force of application was increased to 16.4 N/array. At an application force of 11.0 N/array it was found that, in each case, increasing MN height from 350 to 600 µm to 900 µm led to a significant increase in the depth of MN penetration achieved. Moreover, alteration of MN interspacing had no effect upon depth of penetration achieved, at a constant MN height and force of application. With respect to MN dissolution, an approximate 34% reduction in MN height occurred in the first 15 min, with only 17% of the MN height remaining after a 3-hour period. Across both skin models, there was a significantly greater cumulative amount of theophylline delivered after 24 h from an MN array of 900 µm height (292.23 ± 16.77 µg), in comparison to an MN array of 350 µm height (242.62 ± 14.81 µg) (p < 0.001). Employing full thickness skin significantly reduced drug permeation in both cases. Importantly, this study has highlighted the effect that MN geometry and application force have upon the depth of penetration into skin. While it has been shown that MN height has an important role in the extent of drug delivered across neonatal porcine skin from a soluble MN array, further studies to evaluate the full significance of MN geometry on MN mediated drug delivery are now underway. The successful use of OCT in this study could prove to be a key development for polymeric MN research, accelerating their commercial exploitation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extensive studies on bradykinin-related peptides (BRPs) generated from plasma kininogens in representative species of various vertebrate taxa, have confirmed that many amphibian skin BRPs reflect those present in putative vertebrate predators. For example, the (Val1, Thr6)-bradykinin, present in the defensive skin secretions of many ranids and phyllomedusines, can be generated from plasma kininogens in colubrid snakes - common predators of these frogs. Here, we report the presence of (Arg0, Trp5, Leu8)-bradykinin in the skin secretion of the European edible frog, Pelophylax kl. esculentus, and have found it to be encoded in single copy by a kininogen with an open-reading frame of 68 amino acid residues. This peptide is the archetypal bony fish bradykinin that has been generated from plasma kininogens of the bowfin (Amia calva), the long-nosed gar (Lepisosteus oseus) and the rainbow trout (Onchorhynchus mykiss). More recently, this peptide has been shown to be encoded within cloned kininogens of the Atlantic cod (Gadus morhua) spotted wolf-fish (Anarichas minor), zebrafish (Danio rerio), pufferfish (Tetraodon nigroviridis) and Northern pike (Esox lucius). The latter species is regarded as a major predator of P. kl. esculentus. Synthetic (Arg0, Trp5, Leu8)-bradykinin was previously reported as having multiphasic effects on arterial blood pressure in conscious trout and here we have demonstrated that it can antagonize the relaxation in rat arterial smooth muscle induced by canonical mammalian bradykinin. The discovery of (Arg0, Trp5, Leu8)-bradykinin in the defensive skin secretion of this amphibian completes the spectrum of vertebrate taxon-specific BRPs identified from this source.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To increase structural efficiency of stiffened panels in an aircraft, it is plausible to introduce skin buckling containment features to increase the local skin stability and thus static strength performance. Introducing buckling containment features may also significantly influence the fatigue crack growth performance of the stiffened panel. This study focuses on the experimental demonstration of panel durability with skin bay buckling containment features. Through a series of fatigue crack growth tests on integrally machined aluminium alloy stiffened panels, the potential to simultaneously improve static strength performance and crack propagation behaviour is demonstrated. The introduction of prismatic buckling containment features which have yielded significant static strength performance gains have herein demonstrated potential fatigue life gains of up to + 63 per cent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

From defensive skin secretions acquired from two species of African hyperoliid frogs, Kassina maculata and Kassina senegalensis, we have isolated two structurally related, C-terminally amidated tridecapeptides of novel primary structure that exhibit a broad spectrum of biological activity. In reflection of their structural novelty and species of origin, we named the peptides kassorin M (FLEGLLNTVTGLLamide; 1387.8 Da) and kassorin S (FLGGILNTITGLLamide; 1329.8 Da), respectively. The primary structure and organisation of the biosynthetic precursors of kassorins M and S were deduced from cloned skin secretion-derived cDNA. Both open-reading frames encoded a single copy of kassorin M and S, respectively, located at the C-terminus. Kassorins display limited structural similarities to vespid chemotactic peptides (7/13 residues), temporin A (5/13 residues), the N-terminus of Lv-ranaspumin, a foam nest surfactant protein of the frog, Leptodactylus vastus, and an N-terminal domain of the equine sweat surfactant protein, latherin. Both peptides elicit histamine release from rat peritoneal mast cells. However, while kassorin S was found to possess antibacterial activity against Staphylococcus aureus, kassorin M was devoid of such activity. In contrast, kassorin M was found to contract the smooth muscle of guinea pig urinary bladder (EC50 = 4.66 nM) and kassorin S was devoid of this activity. Kassorins thus represent the prototypes of a novel family of peptides from the amphibian innate immune system as occurring in defensive skin secretions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background. The success of transplantation is hampered by rejection of the graft by alloreactive T cells. Donor dendritic cells (DC) have been shown to be required for direct priming of immune responses to antigens from major histocompatibility complex-mismatched grafts. However, for immune responses to major histocompatibility complex-matched, minor histocompatibility (H) antigen mismatched grafts, the magnitude of the T-cell response to directly presented antigens is reduced, and the indirect pathway is more important. Therefore, we aimed to investigate the requirement for donor DC to directly present antigen from minor H antigen mismatched skin and hematopoietic grafts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amphibian skin secretions are rich sources of biologically-active peptides with antimicrobial peptides predominating in many species. Several studies involving molecular cloning of biosynthetic precursor-encoding cDNAs from skin or skin secretions have revealed that these exhibit highly-conserved domain architectures with an unusually high degree of conserved nucleotide and resultant amino acid sequences within the signal peptides. This high degree of nucleotide sequence conservation has permitted the design of primers complementary to such sites facilitating “shotgun” cloning of skin or skin secretion-derived cDNA libraries from hitherto unstudied species. Here we have used such an approach using a skin secretion-derived cDNA library from an unstudied species of Chinese frog – the Fujian large-headed frog, Limnonectes fujianensis – and have discovered two 16-mer peptides of novel primary structures, named limnonectin-1Fa (SFPFFPPGICKRLKRC) and limnonectin-1Fb (SFHVFPPWMCKSLKKC), that represent the prototypes of a new class of amphibian skin antimicrobial peptide. Unusually these limnonectins display activity only against a Gram-negative bacterium (MICs of 35 and 70 µM) and are devoid of haemolytic activity at concentrations up to 160 µM. Thus the “shotgun” cloning approach described can exploit the unusually high degree of nucleotide conservation in signal peptide-encoding domains of amphibian defensive skin secretion peptide precursor-encoding cDNAs to rapidly expedite the discovery of novel and functional defensive peptides in a manner that circumvents specimen sacrifice without compromising robustness of data

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An octadecapeptide was isolated from the skin secretions of the dusky gopher frog (Rana sevosa) on the basis of histamine release from rat peritoneal mast cells. This peptide was purified to homogeneity by HPLC and found to have the following primary structure, YLKGCWTKSYPPKPCFSR, using both Edman degradation chemistry and peptide sequencing using high-resolution mass spectrometry (Q-TOF MS). The peptide, named peptide Tyrosine Arginine (pYR) shares 77.8% homology with peptide Leucine Arginine (pLR). The effects of the natural amidated peptide, non-amidated peptide and C-loop region of pYR on granulopoiesis and neutrophil apoptosis were investigated. All three analogues inhibited the early development of granulocyte macrophage colonies from bone marrow stem cells but did not induce apoptosis of the end stage granulocytes, the mature neutrophil. Thus, pYR is a novel member of an important and emerging new class of amphibian peptides with hemopoietic actions. (c) 2004 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objectives were to determine if the skin secretion of the European yellow-bellied toad (Bombina variegata), in common with other related species, contains a bradykinin inhibitor peptide and to isolate and structurally characterize this peptide. Materials and Methods: Lyophilized skin secretion obtained from this toad was subjected to reverse phase HPLC fractionation with subsequent bioassay of fractions for antagonism of the bradykinin activity using an isolated rat tail artery smooth muscle preparation. Subsequently, the primary structure of the peptide was established by a combination of microsequencing, mass spectroscopy, and molecular cloning, following which a synthetic replicate was chemically synthesised for bioassay. Results: A single peptide of molecular mass 2300.92 Da was resolved in HPLC fractions of skin secretion and its primary structure determined as IYNAIWP-KH-NK-KPGLL-. Database interrogation with this sequence indicated that this peptide was encoded by skin kininogen-1 previously cloned from B. variegata. The blank cycles were occupied by cysteinyl (C) residues and the peptide was located toward the C-terminus of the skin kininogen, and flanked N-terminally by a classical -KR- propeptide convertase processing site. The peptide was named IC-20 in accordance (I = N-terminal isoleucine, C = C-terminal cysteine, 20 = number of residues). Like the natural peptide, its synthetic replicate displayed an antagonism of bradykinin-induced arterial smooth muscle relaxation. Conclusion: IC-20 represents a novel bradykinin antagonizing peptide from amphibian skin secretions and is the third such peptide found to be co-encoded with bradykinins within skin kininogens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amphibian skin secretions are established sources of bioactive peptides. Here we describe the isolation, structural and pharmacological characterisation of a novel vasoconstrictor peptide from the skin secretion of the African hyperoliid frog, Kassina maculata, which exhibits no structural similarity to any known class of amphibian skin peptide. The peptide consists of 21 amino acid residues, FIKELLPHLSGIIDSVANAIK, and is C-terminally amidated. The provisional structure was obtained by MS/MS fragmentation using an Orbitrap mass spectrometer and L/I ambiguities were resolved following molecular cloning of biosynthetic precursor-encoding cDNA. A synthetic replicate of the peptide was found to possess weak antimicrobial and haemolytic activities but was exceptionally effective in constricting the smooth muscle of rat tail artery (EC50 of 25pM). In reflection of its exceptional potency in constricting rat arterial smooth muscle, the peptide was named kasstasin, a derivation of Kassina and “stasis” (stoppage of flow). These data illustrate the continuing potential of amphibian skin secretions to provide novel natural peptide templates for biological evaluation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The introduction of skin sub-stiffening features has the potential to modify the local stability and fatigue crack growth performance of stiffened panels. Proposed herein is a method to enable initial static strength sizing of panels with such skin sub-stiffening features. The method uses bespoke skin buckling coefficients, automatically generated by Finite Element analysis and thus limits the modification to the conventional aerospace panel initial sizing process. The approach is demonstrated herein and validated for prismatic sub-stiffening features. Moreover, examination of the generated buckling coefficient data illustrates the influence of skin sub-stiffening on buckling behavior, with static strength increases typically corresponding to a reduction in the number of initial skin longitudinal buckle half-waves.