135 resultados para plasma density


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have conducted an intervention trial to assess the effects of antioxidants and B-group vitamins on the susceptibility of low-density lipoprotein (LDL) to oxidation. A total of 509 men aged 30-49 from a local workforce were screened for total plasma homocysteine. The 132 selected (homocysteine concentration > or = 8.34 mumol/l) men were randomly assigned, using a factorial design, to one of four groups receiving supplementation with B group vitamins alone (1 mg folic acid, 7.2 mg pyridoxine, 0.02 mg cyanocobalamin), antioxidant vitamins (150 mg ascorbic acid, 67 mg alpha-tocopherol, 9 mg beta-carotene), B vitamins with antioxidant vitamins, or placebo. Intervention was double-blind. A total of 101 men completed the 8-week study. The lag time of LDL isolated ex vivo to oxidation (induced by 2 mumol/l cupric chloride) was increased in the two groups receiving antioxidants whether with (6.88 +/- 1.65 min) or without (8.51 +/- 1.77 min) B-vitamins, compared with placebo (-2.03 +/- 1.50) or B-vitamins alone (-3.34 +/- 1.08) (Mean +/- S.E., P <0.001). Antibodies to malondialdehyde (MDA) modified LDL were also measured, but there were no significant changes in titers of these antibodies in any group of subjects whether receiving antioxidants or not. Contrast analysis showed that there was no interaction between antioxidants and B-group vitamins. This study indicates that while B-group vitamins lower plasma homocysteine they do not have an antioxidant effect. Thus B-group vitamins and antioxidants appear to have separate, independent effects in reducing cardiovascular risk.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adrenergic receptors (alpha 2, beta 2), plasma noradrenaline, heart rate and the pressor responsiveness to infused noradrenaline were examined in ten healthy male volunteers before and after 2 weeks of placebo or captopril therapy in a double blind cross-over study. No significant differences in these measurements were observed between the captopril and placebo treated groups. The study shows that in sodium replete normotensive subjects, long-term angiotensin converting enzyme inhibition does not lead to changes in adrenoceptor density. There is also no alteration in plasma noradrenaline levels nor in the pressor responsiveness to infused noradrenaline. These data suggest that the known interaction between the renin-angiotensin system and the sympathetic nervous system observed in animals is probably of little significance in man.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Extreme ultraviolet (XUV) and X-ray harmonic spectra produced by intense laser-solid interactions have, so far, been consistent with Doppler upshifted reflection from collective relativistic plasma oscillations-the relativistically oscillating mirror mechanism(1-6). Recent theoretical work, however, has identified a new interaction regime in which dense electron nanobunches are formed at the plasma-vacuum boundary resulting in coherent XUV radiation by coherent synchrotron emission(7,8) (CSE). Our experiments enable the isolation of CSE from competing processes, demonstrating that electron nanobunch formation does indeed occur. We observe spectra with the characteristic spectral signature of CSE-a slow decay of intensity, I, with high-harmonic order, n, as I(n) proportional to n(-1.62) before a rapid efficiency rollover. Particle-in-cell code simulations reveal how dense nanobunches of electrons are periodically formed and accelerated during normal-incidence interactions with ultrathin foils and result in CSE in the transmitted direction. This observation of CSE presents a route to high-energy XUV pulses(7,8) and offers a new window on understanding ultrafast energy coupling during intense laser-solid density interactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Context: In nondiabetic pregnancy, cross-sectional studies have shown associations between maternal dyslipidemia and preeclampsia (PE). In type 1 diabetes mellitus (T1DM), the prevalence of PE is increased 4-fold, but prospective associations with plasma lipoproteins are unknown.

Objectives: The aim of this study was to define lipoprotein-related markers and potential mechanisms for PE in T1DM.

Design and Settings: We conducted a multicenter prospective study in T1DM pregnancy.

Patients: We studied 118 T1DM women (26 developed PE, 92 remained normotensive). Subjects were studied at three visits before PE onset [12.2 1.9, 21.6 1.5, and 31.5 1.7 wk gestation (means SD)] and at term (37.6 2.0 wk). Nondiabetic normotensive pregnant women (n 21) were included for reference.

Main Outcome Measures: Conventional lipid profiles, lipoprotein subclasses [defined by size (nuclear magnetic resonance) and by apolipoprotein content], serum apolipoproteins (ApoAI, ApoB, and ApoCIII), and lipolysis (ApoCIII ratio) were measured in T1DM women with and without subsequent PE.

Results: In women with vs. without subsequent PE, at the first and/or second study visits: lowdensity lipoprotein (LDL)-cholesterol, particle concentrations of total LDL and large (but not small) LDL, serum ApoB, and ApoB:ApoAI ratio were all increased (P 0.05); peripheral lipoprotein lipolysis was decreased (P0.01). These early differences remained significant in covariate analysis (glycated hemoglobin, actual prandial status, gravidity, body mass index, and diabetes duration) but were not present at the third study visit. High-density lipoprotein and very low-density lipoprotein subclasses did not differ between groups before PE onset.

Conclusions: Early in pregnancy, increased cholesterol-rich lipoproteins and an index suggesting decreased peripheral lipolysis were associated with subsequent PE in T1DM women. Background maternal lipoprotein characteristics, perhaps masked by effects of late pregnancy, may influence PE risk.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cranberries, high in polyphenols, have been associated with several cardiovascular health benefits, although limited clinical trials have been reported to validate these findings. We tested the hypothesis that commercially available low-energy cranberry juice (Ocean Spray Cranberries, Inc, Lakeville-Middleboro, Mass) will decrease surrogate risk factors of cardiovascular disease, such as lipid oxidation, inflammation, and dyslipidemia, in subjects with metabolic syndrome. In a randomized, double-blind, placebo-controlled trial, participants identified with metabolic syndrome (n = 15-16/group) were assigned to 1 of 2 groups: cranberry juice (480 mL/day) or placebo (480 mL/day) for 8 weeks. Anthropometrics, blood pressure measurements, dietary analyses, and fasting blood draws were conducted at screen and 8 weeks of the study. Cranberry juice significantly increased plasma antioxidant capacity (1.5 ± 0.6 to 2.2 ± 0.4 µmol/L [means ± SD], P <.05) and decreased oxidized low-density lipoprotein and malondialdehyde (120.4 ± 31.0 to 80.4 ± 34.6 U/L and 3.4 ± 1.1 to 1.7 ± 0.7 µmol/L, respectively [means ± SD], P <.05) at 8 weeks vs placebo. However, cranberry juice consumption caused no significant improvements in blood pressure, glucose and lipid profiles, C-reactive protein, and interleukin-6. No changes in these parameters were noted in the placebo group. In conclusion, low-energy cranberry juice (2 cups/day) significantly reduces lipid oxidation and increases plasma antioxidant capacity in women with metabolic syndrome.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glucose can react with the lysine residues of low-density lipoproteins (LDLs) and convert the lipoprotein to a form with a receptor-mediated uptake by cultured cells that is impaired. However, in contrast to other modified lipoproteins taken up by both murine and human macrophages via the scavenger-receptor pathway that may induce the formation of foam cells, glycosylated LDL is not recognized by murine macrophages, and thus far, it has not been shown to lead to marked intracellular accumulation of cholesterol in human macrophages. This study illustrates that glycosylated LDL incubated with human monocyte-derived macrophages, at a concentration of 100 micrograms LDL/ml medium, stimulates significantly more cholesteryl ester (CE) synthesis than does control LDL (10.65 +/- 1.5 vs. 4.8 +/- 0.13 nmol.mg-1 cell protein.20 h-1; P less than .05). At LDL concentrations similar to those of plasma, the rate of CE synthesis in macrophages incubated with glycosylated LDL is more markedly enhanced than that observed in cells incubated with control LDL (3-fold increase). The marked stimulation of CE synthesis in human macrophages exposed to glycosylated LDL is paralleled by a significant increase in CE accumulation in these cells (P less than .001). The increase in CE synthesis and accumulation seem to be mediated by an increase in the degradation of glycosylated LDL by human macrophages. Glycosylated LDL enters the macrophages and is degraded by the classic LDL-receptor pathway in slightly smaller amounts than control LDL, but its degradation by pathways other than the classic LDL receptor or scavenger receptor is markedly enhanced.(ABSTRACT TRUNCATED AT 250 WORDS)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glycosylation of low density lipoproteins obtained from 16 patients with Type 1 (insulin-dependent) diabetes and from 16 age-, sex-, and race-matched controls, was determined. The diabetic patients were normolipaemic and were in good or fair glycaemic control. Eleven patients performed home blood glucose monitoring. Glycosylation of low density lipoproteins in the diabetic patients was significantly higher (p less than 0.001) than in the control subjects, and was significantly correlated with haemoglobin A1c, (p less than 0.01), glycosylation of plasma proteins, (p less than 0.001), and mean home blood glucose, (p less than 0.01). This study confirms that, in diabetic patients, increased glycosylation of low density lipoprotein occurs to an extent which correlates closely with other commonly used indices of glycaemic control.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: The authors investigated the receptor-mediated endocytosis (RME) and intracellular trafficking of insulin and low-density lipoprotein (LDL) in cultured retinal vascular endothelial cells (RVECs). METHODS: Low-density lipoprotein and insulin were conjugated to 10 nm colloidal gold, and these ligands were added to cultured bovine RVECs for 20 minutes at 4 degrees C. The cultures were then warmed to 37 degrees C and fixed after incubation times between 30 seconds and 1 hour. Control cells were incubated with unconjugated gold colloid at times and concentrations similar to those of the ligands. Additional control cells were exposed to several concentrations of anti-insulin receptor antibody or a saturating solution of unconjugated insulin before incubation with gold insulin. RESULTS: Using transmission electron microscopy, insulin gold and LDL gold were both observed at various stages of RME. Insulin-gold particles were first seen to bind to the apical plasma membrane (PM) before clustering in clathrin-coated pits and internalization in coated vesicles. Gold was later visualized in uncoated cytoplasmic vesicles, corresponding to early endosomes and multivesicular bodies (MVBs) or late endosomes. In several instances, localized regions of the limiting membrane of the MVBs appeared coated, a feature of endosomal membranes not previously described. After RME at the apical PM and passage through the endosomal system, the greater part of both insulin- and LDL-gold conjugates was seen to accumulate in large lysosome-like compartments. However, a small but significant proportion of the internalized ligands was transcytosed and released as discrete membrane-associated quanta at the basal cell surface. The uptake of LDL gold was greatly increased in highly vacuolated, late-passage RVECs. In controls, anti-insulin receptor antibody and excess unconjugated insulin caused up to 89% inhibition in gold-insulin binding and internalization. CONCLUSION: These results illustrate the internalization and intracellular trafficking by RVECs of insulin and LDL through highly efficient RME, and they provide evidence for at least two possible fates for the endocytosed ligands. This study outlines a route by which vital macromolecules may cross the inner blood-retinal barrier.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: In adults, obesity-driven inflammation can lead to increased cardiovascular disease (CVD). However, information regarding childhood obesity and its inflammatory sequelae is less well defined. Serum amyloid-A (SAA) is an inflammatory molecule that rapidly associates with high-density lipoproteins (HDLs) and renders them dysfunctional. Therefore, SAA may be a useful biomarker to identify increased CVD potential in overweight and obese children.

METHODS: Young Hearts 2000 is a cross-sectional cohort study in which 92 children who were obese were matched for age and sex with 92 overweight and 92 lean children. HDL2 and HDL3 (HDL2&3) were isolated from plasma by a three-step rapid-ultracentrifugation procedure. SAA was measured in serum and HDL2&3 by an enzyme-linked immunosorbent assay procedure, and the activities of cholesterol ester transfer protein (CETP) and lecithin cholesteryl acyltransferase (LCAT) were measured by fluorimetric assays.

RESULTS: Trends across the groups indicated that SAA increased in serum and HDL2&3 as BMI increased, as did HDL2-CETP and HDL2-LCAT activities.

CONCLUSION: These results have provided evidence that overweight and obese children are exposed to an inflammatory milieu that impacts the antiatherogenic properties of HDL and that could increase CVD risk. This supports the concept that it is important to target childhood obesity to help minimize future cardiovascular events.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We unravel the complex chemistry in both the neutral and ionic systems of a radio-frequency-driven atmospheric-pressure plasma in a helium-oxygen mixture (He-0.5% O) with air impurity levels from 0 to 500 ppm of relative humidity from 0% to 100% using a zero-dimensional, time-dependent global model. Effects of humid air impurity on absolute densities and the dominant production and destruction pathways of biologically relevant reactive neutral species are clarified. A few hundred ppm of air impurity crucially changes the plasma from a simple oxygen-dependent plasma to a complex oxygen-nitrogen-hydrogen plasma. The density of reactive oxygen species decreases from 10 to 10 cm, which in turn results in a decrease in the overall chemical reactivity. Reactive nitrogen species (10 cm ), atomic hydrogen and hydroxyl radicals (10-10 cm) are generated in the plasma. With 500 ppm of humid air impurity, the densities of positively charged ions and negatively charged ions slightly increase and the electron density slightly decreases (to the order of 10 cm). The electronegativity increases up to 2.3 compared with 1.5 without air admixture. Atomic hydrogen, hydroxyl radicals and oxygen ions significantly contribute to the production and destruction of reactive oxygen and reactive nitrogen species. © 2013 IOP Publishing Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent progress in plasma science and technology has enabled the development of a new generation of stable cold non-equilibrium plasmas operating at ambient atmospheric pressure. This opens horizons for new plasma technologies, in particular in the emerging field of plasma medicine. These non-equilibrium plasmas are very efficient sources for energy transport through reactive neutral particles (radicals and metastables), charged particles (ions and electrons), UV radiation, and electro-magnetic fields. The effect of a cold radio frequency-driven atmospheric pressure plasma jet on plasmid DNA has been investigated. The formation of double strand breaks correlates well with the atomic oxygen density. Taken with other measurements, this indicates that neutral components in the jet are effective in inducing double strand breaks. Plasma manipulation techniques for controlled energy delivery are highly desirable. Numerical simulations are employed for detailed investigations of the electron dynamics, which determines the generation of reactive species. New concepts based on nonlinear power dissipation promise superior strategies to control energy transport for tailored technological exploitations. © 2012 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Isochoric heating of solid-density matter up to a few tens of eV is of interest for investigating astrophysical or inertial fusion scenarios. Such ultra-fast heating can be achieved via the energy deposition of short-pulse laser generated electrons. Here, we report on experimental measurements of this process by means of time-and space-resolved optical interferometry. Our results are found in reasonable agreement with a simple numerical model of fast electron-induced heating. (C) 2013 AIP Publishing LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel numerical technique is proposed to model thermal plasma of microseconds/milliseconds time-scale effect. Modelling thermal plasma due to lightning strike will allow the estimation of electric current density, plasma pressure, and heat flux at the surface of the aircraft structure. These input data can then be used for better estimation of the mechanical/thermal induced damage on the aircraft structures for better protection systems design. Thermal plasma generated during laser cutting, electric (laser) welding and other plasma processing techniques have been the focus of many researchers. Thermal plasma is a gaseous state that consists from a mixture of electrons, ions, and natural particles. Thermal plasma can be assumed to be in local thermodynamic equilibrium, which means the electrons and the heavy species have equal temperature. Different numerical techniques have been developed using a coupled Navier Stokes – Heat transfer – Electromagnetic equations based on the assumption that the thermal plasma is a single laminar gas flow. These previous efforts focused on generating thermal plasma of time-scale in the range of seconds. Lighting strike on aircraft structures generates thermal plasma of time-scale of milliseconds/microseconds, which makes the previous physics used not applicable. The difficulty comes from the Navier-Stokes equations as the fluid is simulated under shock load, this introducing significant changes in the density and temperature of the fluid.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The linear and nonlinear properties of ion acoustic excitations propagating in warm dense electron-positron-ion plasma are investigated. Electrons and positrons are assumed relativistic and degenerate, following the Fermi-Dirac statistics, whereas the warm ions are described by a set of classical fluid equations. A linear dispersion relation is derived in the linear approximation. Adopting a reductive perturbation method, the Korteweg-de Vries equation is derived, which admits a localized wave solution in the form of a small-amplitude weakly super-acoustic pulse-shaped soliton. The analysis is extended to account for arbitrary amplitude solitary waves, by deriving a pseudoenergy-balance like equation, involving a Sagdeev-type pseudopotential. It is shown that the two approaches agree exactly in the small-amplitude weakly super-acoustic limit. The range of allowed values of the pulse soliton speed (Mach number), wherein solitary waves may exist, is determined. The effects of the key plasma configuration parameters, namely, the electron relativistic degeneracy parameter, the ion (thermal)-to-the electron (Fermi) temperature ratio, and the positron-to-electron density ratio, on the soliton characteristics and existence domain, are studied in detail. Our results aim at elucidating the characteristics of ion acoustic excitations in relativistic degenerate plasmas, e.g., in dense astrophysical objects, where degenerate electrons and positrons may occur.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ultrashort, high contrast laser pulses when focused to high intensity and reflected from a steep solid density 'plasma mirror (PM)' contain coherent XUV radiation in the form of high-order harmonics. The emission can either be due to the relativistically driven oscillating PM (ROM) [1] or due to Coherent wake emission (CWE) [2]. Selective control over the mechanisms and the characteristics of these harmonics and understanding the physics is crucial for the development of intense attosecond light sources. © 2013 IEEE.