335 resultados para photothermal therapy
Resumo:
In photodynamic antimicrobial chemotherapy (PACT), a combination of a sensitising drug and visible light causes selective destruction of microbial cells. The ability of light-drug combinations to kilt microorganisms has been known for over 100 years. However, it is only recently with the beginning of the search for alternative treatments for antibiotic-resistant pathogens that the phenomenon has been investigated in detail. Numerous studies have shown PACT to be highly effective in the in vitro destruction of viruses and protozoa, as well as Gram-positive and Gram-negative bacteria and fungi. Results of experimental investigations have demonstrated conclusively that both dermatomycetes and yeasts can be effectively killed by photodynamic action employing phenothiazinium, porphyrin and phthatocyanine photosensitisers. Importantly, considerable setectivity for fungi over human cells has been demonstrated, no reports of fungal resistance exist and the treatment is not associated with genotoxic or mutagenic effects to fungi or human cells. In spite of the success of cell culture investigations, only a very small number of in vivo animal. and human trials have been published. The present paper reviews the studies published to date on antifungal applications of PACT and aims to raise awareness of this area of research, which has the potential to make a significant impact in future treatment of fungal infections. (c) 2007 Elsevier GmbH. All rights reserved.
Resumo:
OBJECTIVE: To assess the applicability of photodynamic therapy (PDT) in the management of vulvodynia whereby a novel, patch-type system, loaded with 5-aminolevulinic acid (ALA), was used to administer PDT to vulvar regions displaying the characteristics of vulvodynia.
Resumo:
The use of androgen deprivation therapy (ADT) in the treatment of prostate cancer is associated with changes in body composition including increased fat and decreased lean mass. Limited information exists regarding the rate and extent of these changes. This systematic review was conducted to determine the effects of ADT on body composition in prostate cancer patients.
Resumo:
Photodynamic therapy (PDT) and photodynamic antimicrobial chemotherapy (PACT) are techniques that combine the effects of visible light irradiation with subsequent biochemical events that arise from the presence of a photosensitizing drug (possessing no dark toxicity) to cause destruction of selected cells. Despite its still widespread clinical use, Photofrin (R) has several drawbacks that limit its general clinical use. Consequently, there has been extensive research into the design of improved alternative photosensitizers aimed at overcoming these drawbacks. While there are many review articles on the subject of PDT and PACT, these have focused on the photosensitizers that have been used clinically, with little emphasis placed on how the chemical aspects of the molecule can affect their efficacy as PDT agents. Indeed, many of the PDT/PACT agents used clinically may not even be the most appropriate within a given class. As such, this review aims to provide a better understanding of the factors that have been investigated, while aiming at improving the efficacy of a molecule intended to be used as a photosensitizer. Recent publications, spanning the last 5 years, concerning the design, synthesis and clinical usage of photosensitizers for application in PDT and PACT are reviewed, including 5-aminolevulinic acid, porphyrins, chlorins, bacteriochlorins, texaphyrins, phthalocyanines and porphycenes. It has been shown that there are many important considerations when designing a potential PDT/PACT agent, including the influence of added groups on the lipophilicity of the molecule, the positioning and nature of these added groups within the molecule, the presence of a central metal ion and the number of charges that the molecule possesses. The extensive ongoing research within the field has led to the identification of a number of potential lead molecules for application in PDT/PACT. The development of the second-generation photosensitizers, possessing shorter periods of photosensitization, longer activation wavelengths and greater selectivity for diseased tissue provides hope for attaining the ideal photosensitizer that may help PDT and PACT move from laboratory investigation to clinical practice.
Resumo:
Purpose: To use preferential hyperacuity perimetry to obtain a quantitative measure of central visual field distortion that would aid in the monitoring of functional responsiveness to ranibizumab treatment.
Development of radiation-inducible promoters for use in nitric oxide synthase gene therapy of cancer
Resumo:
Purpose: To quantify decreases in health-related quality of life (HRQoL) for given deterioration in clinical measures of vision; to describe the shape of these relationships; and to test whether the gradients of these relationships change with duration of visual loss.