147 resultados para object localization
Resumo:
Synchrotron-based X-ray fluorescence (S-XRF) was utilized to locate arsenic (As) in polished (white) and unpolished (brown) rice grains from the United States, China, and Bangladesh. In white rice As was generally dispersed throughout the grain, the bulk of which constitutes the endosperm. In brown rice As was found to be preferentially localized at the surface, in the region corresponding to the pericarp and aleurone layer. Copper, iron, manganese, and zinc localization followed that of arsenic in brown rice, while the location for cadmium and nickel was distinctly different, showing relatively even distribution throughout the endosperm. The localization of As in the outer grain of brown rice was confirmed by laser ablation ICP-MS. Arsenic speciation of all grains using spatially resolved X-ray absorption near edge structure (micro-XANES) and bulk extraction followed by anion exchange HPLC-ICP-MS revealed the presence of mainly inorganic As and dimethylarsinic acid (DMA). However, the two techniques indicated different proportions of inorganic:organic As species. A wider survey of whole grain speciation of white (n=39) and brown (n=45) rice samples from numerous sources (field collected, supermarket survey, and pot trials) showed that brown rice had a higher proportion of inorganic arsenic present than white rice. Furthermore, the percentage of DMA present in the grain increased along with total grain arsenic.
Resumo:
Language deficits are frequently reported in studies of patients with schizophrenia. The present study sought to test the hypothesis that such deficits are related to callosal function in this group. The FAS test of verbal fluency and Perin's Spoonerisms test of phonological processing were the tests of language. Callosal function was assessed using a Crossed Finger Localisation Test (CFLT), which is a measure of the interhemispheric transfer of somatosensory information. Patients with schizophrenia performed less well than controls on measures of language function. as well as on the CFLT. Significant positive correlations between CFLT performance and language function were present in the patient group, but not the control group. These findings extend on previous studies that report functional abnormalities of the corpus callosum in schizophrenia and are consistent with the hypothesis that language deficits in schizophrenia are related to impaired callosal functioning in this group. However, other explanations cannot be ruled Out.
Resumo:
Massive young stellar objects (YSOs) are powerful infrared Hi line emitters. It has been suggested that these lines form in an outflow from a disc surrounding the YSO. Here, new two-dimensional Monte Carlo radiative transfer calculations are described which test this hypothesis. Infrared spectra are synthesized for a YSO disc wind model based on earlier hydrodynamical calculations. The model spectra are in qualitative agreement with the observed spectra from massive YSOs, and therefore provide support for a disc wind explanation for the Hi lines. However, there are some significant differences: the models tend to overpredict the Bra/Br? ratio of equivalent widths and produce line profiles which are slightly too broad and, in contrast to typical observations, are double-peaked. The interpretation of these differences within the context of the disc wind picture and suggestions for their resolution via modifications to the assumed disc and outflow structure are discussed. © 2005 RAS.
Resumo:
We report that subwavelength localization of light in the near-field of a double-periodic photonic metamaterial may be efficiently controlled by the polarization and wavelength of the incident radiation. A dramatic variation in the periodic near-field landscapes, including a transition from a pattern of isolated subwavelength plasmon hot-spots to a blurred, low contrast pattern, accompanied by a change in the pattern's symmetry has been observed in the proximity of an aluminum nanowire "fish-scale" nanostructure. Hot-spots as small as 0.23 lambda have been achieved and their position has been controlled by tuning the wavelength of incident light across the dipole absorption resonance of the metamaterial. A simple switch of the polarization state can lead to a spatial period doubling in the landscape pattern.
Resumo:
A series of monoclonal antibodies was prepared against tegumental and internal antigens of Fasciola hepatica by immunizing mice with whole adult-fluke homogenates prior to harvesting the splenic lymphocytes for fusion. Preliminary screening by the Indirect Fluorescent Antibody technique indicated the occurrence of discrete groups of monoclonals differing from one another in tissue-specificity but within which IFA labelling patterns were fairly consistent. Representative hybridomas for 5 of these groups were stabilized and used to produce ascites fluid in mice. By application of an immunogold labelling technique it was possible to map the distribution of antigens for which each monoclonal antibody had affinity throughout the tissues of 4-week and 12-week flukes. Several monoclonals specifically labelled antigenic determinants on the important tegumental antigen T1. However the distribution of gold colloid labelling suggested that epitopes other than that normally exposed to the infected host were recognized; and several monoclonals specifically attached to T1 antigen in the tegument of juvenile worms only. The glycocalyx of the gut and excretory system of flukes shared T1 antigenicity with the tegument. Monoclonal antibodies were produced against an internal immunogen associated with ribosomes and heterochromatin in active protein-producing cells, and against interstitial material of adult flukes. Monoclonals against antigens in parenchymal cell cytoplasm and in mature vitelline cells were recognized but the corresponding hybridomas were not stabilized.
Resumo:
The localisation and distribution of the cytoskeletal protein tubulin in the adult liver fluke Fasciola hepatica have been determined by an indirect immunofluorescence technique using a monoclonal antibody raised against beta-tubulin. Tubulin was demonstrated in the tegumental syncytium and in the tegumental cell bodies and their cytoplasmic connections with the surface syncytium. Immunostaining was also evident in the nerve fibres innervating sensory receptors in the tegument, in the nerve plexus innervating the sub-tegumental musculature and in the cytoplasmic extensions of the nurse cells within the vitelline follicle. Immunoblotting of whole fluke fractions produced a single band corresponding to a molecule of approximately 54 kDa in size. This figure corresponds with previous data obtained on tubulin from other helminth and eukaryotic sources.
Resumo:
Research into localization has produced a wealth of algorithms and techniques to estimate the location of wireless network nodes, however the majority of these schemes do not explicitly account for non-line of sight conditions. Disregarding this common situation reduces their accuracy and their potential for exploitation in real world applications. This is a particular problem for personnel tracking where the user's body itself will inherently cause time-varying blocking according to their movements. Using empirical data, this paper demonstrates that, by accounting for non-line of sight conditions and using received signal strength based Monte Carlo localization, meter scale accuracy can be achieved for a wrist-worn personnel tracking tag in a 120 m indoor office environment. © 2012 IEEE.
Resumo:
Processing of the 'CaaX' motif found on the C-termini of many proteins, including the proto-oncogene Ras, requires the ER (endoplasmic reticulum)-resident protease RCE1 (Ras-converting enzyme 1) and is necessary for the proper localization and function of many of these 'CaaX' proteins. In the present paper, we report that several mammalian species have a novel isoform (isoform 2) of RCE1 resulting from an alternate splice site and producing an N-terminally truncated protein. We demonstrate that both RCE1 isoform 1 and the newly identified isoform 2 are required to reinstate proper H-Ras processing and thus plasma membrane localization in RCE1-null cells. In addition, we show that the deubiquitinating enzyme USP17 (ubiquitin-specific protease 17), previously shown to modulate RCE1 activity, can regulate the abundance and localization of isoform 2. Furthermore, we show that isoform 2 is ubiquitinated on Lys43 and deubiquitinated by USP17. Collectively, the findings of the present study indicate that RCE1 isoform 2 is required for proper 'CaaX' processing and that USP17 can regulate this via its modulation of RCE1 isoform 2 ubiquitination.
Resumo:
We describe the Pan-STARRS Moving Object Processing System (MOPS), a modern software package that produces automatic asteroid discoveries and identifications from catalogs of transient detections from next-generation astronomical survey telescopes. MOPS achieves >99.5% efficiency in producing orbits from a synthetic but realistic population of asteroids whose measurements were simulated for a Pan-STARRS4-class telescope. Additionally, using a nonphysical grid population, we demonstrate that MOPS can detect populations of currently unknown objects such as interstellar asteroids. MOPS has been adapted successfully to the prototype Pan-STARRS1 telescope despite differences in expected false detection rates, fill-factor loss, and relatively sparse observing cadence compared to a hypothetical Pan-STARRS4 telescope and survey. MOPS remains highly efficient at detecting objects but drops to 80% efficiency at producing orbits. This loss is primarily due to configurable MOPS processing limits that are not yet tuned for the Pan-STARRS1 mission. The core MOPS software package is the product of more than 15 person-years of software development and incorporates countless additional years of effort in third-party software to perform lower-level functions such as spatial searching or orbit determination. We describe the high-level design of MOPS and essential subcomponents, the suitability of MOPS for other survey programs, and suggest a road map for future MOPS development.
Resumo:
12. Vlajic, J., Bjelic. N., Vidovic, M., (2006), “Object oriented supply chain simulation in Flexsim”, Proceedings of The microCAD 2006 International Scientific Conference, Miskolc, Hungary, pp.197-203;
Resumo:
A technique for optimizing the efficiency of the sub-map method for large-scale simultaneous localization and mapping (SLAM) is proposed. It optimizes the benefits of the sub-map technique to improve the accuracy and consistency of an extended Kalman filter (EKF)-based SLAM. Error models were developed and engaged to investigate some of the outstanding issues in employing the sub-map technique in SLAM. Such issues include the size (distance) of an optimal sub-map, the acceptable error effect caused by the process noise covariance on the predictions and estimations made within a sub-map, when to terminate an existing sub-map and start a new one and the magnitude of the process noise covariance that could produce such an effect. Numerical results obtained from the study and an error-correcting process were engaged to optimize the accuracy and convergence of the Invariant Information Local Sub-map Filter previously proposed. Applying this technique to the EKF-based SLAM algorithm (a) reduces the computational burden of maintaining the global map estimates and (b) simplifies transformation complexities and data association ambiguities usually experienced in fusing sub-maps together. A Monte Carlo analysis of the system is presented as a means of demonstrating the consistency and efficacy of the proposed technique.
Resumo:
In existing WiFi-based localization methods, smart mobile devices consume quite a lot of power as WiFi interfaces need to be used for frequent AP scanning during the localization process. In this work, we design an energy-efficient indoor localization system called ZigBee assisted indoor localization (ZIL) based on WiFi fingerprints via ZigBee interference signatures. ZIL uses ZigBee interfaces to collect mixed WiFi signals, which include non-periodic WiFi data and periodic beacon signals. However, WiFi APs cannot be identified from these WiFi signals by ZigBee interfaces directly. To address this issue, we propose a method for detecting WiFi APs to form WiFi fingerprints from the signals collected by ZigBee interfaces. We propose a novel fingerprint matching algorithm to align a pair of fingerprints effectively. To improve the localization accuracy, we design the K-nearest neighbor (KNN) method with three different weighted distances and find that the KNN algorithm with the Manhattan distance performs best. Experiments show that ZIL can achieve the localization accuracy of 87%, which is competitive compared to state-of-the-art WiFi fingerprint-based approaches, and save energy by 68% on average compared to the approach based on WiFi interface.