271 resultados para neck muscle


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We tested the hypothesis that voltage-operated Ca2+ channels mediate an extracellular Ca2+ influx in muscle fibres from the human parasite Schistosoma mansoni and, along with Ca2+ mobilization from the sarcoplasmic reticulum, contribute to Muscle contraction. Indeed, whole-cell voltage clamp revealed voltage-gated inward currents carried by divalent ions with a peak current elicited by steps to + 20 mV (from a holding potential of -70 mV). Depolarization of the fibres by elevated extracellular K+ elicited contractions that were completely dependent on extracellular Ca2+ and inhibited by nicardipine (half inhibition at 4(.)1 mu M). However these contractions were not very sensitive to other classical blockers of voltage-gated Ca2+ channels, indicating that the schistosome Muscle channels have an atypical pharmacology when compared to their mammalian counterparts. Furthermore, the contraction induced by 5 mM caffeine was inhibited after depletion of the sarcoplasmic reticulum either with thapsigargin (10 mu M) or ryanodine (10 mu M). These data suggest that voltage-operated Ca2+ channels docontribute to S. mansoni contraction as does the mobilization of stored Ca2+, despite the small volume of sarcoplasmic reticulum in schistosome smooth muscles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Platyhelminthes occupy a unique position in nerve-muscle evolution, being the most primitive of metazoan phyla. Essentially, their nervous system consists of an archaic brain and associated pairs of longitudinal nerve cords cross-linked as an orthogon by transverse commissures. Confocal imaging reveals that these central nervous system elements are in continuity with an array of peripheral nerve plexuses which innervate a well-differentiated grid work of somatic muscle as well as a complexity of myofibres associated with organs of attachment, feeding, and reproduction. Electrophysiological studies of flatworm muscles have exposed a diversity of voltage-activated ion channels that influence muscle contractile events. Neuronal cell types are mainly multi- and bi-polar and highly secretory in nature, producing a heterogeneity of vesicular inclusions whose contents have been identified cytochemically to include all three major types of cholinergic, aminergic, and peptidergic messenger molecules. A landmark discovery in flatworm neurobiology was the biochemical isolation and amino acid sequencing of two groups of native neuropeptides: neuropeptide F and FMRFamide-related peptides (FaRPs). Both families of neuropeptide are abundant and broadly distributed in platyhelminths, occurring in neuronal vesicles in representatives of all major flatworm taxa. Dual localization studies have revealed that peptidergic and cholinergic substances occupy neuronal sets separate from those of serotoninergic components. The physiological actions of neuronal messengers in flatworms are beginning to be established, and where examined, FaRPs and 5-HT are myoexcitatory, while cholinomimetic substances are generally inhibitory. There is immunocytochemical evidence that FaRPs and 5-HT have a regulatory role in the mechanism of egg assembly. Use of muscle strips and (or) muscle fibres from free-living and parasitic flatworms has provided baseline information to indicate that muscle responses to FaRPs are mediated by a G-protein-coupled receptor, and that the signal transduction pathway for contraction involves the second messengers cAMP and protein kinase C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The tendency for contractions of muscles in the upper limb to give rise to increases in the excitability of corticospinal projections to the homologous muscles of the opposite limb is well known. Although the suppression of this tendency is integral to tasks of daily living, its exploitation may prove to be critical in the rehabilitation of acquired hemiplegias. Transcranial direct current (DC) stimulation induces changes in cortical excitability that outlast the period of application. We present evidence that changes in the reactivity of the corticospinal pathway induced by DC stimulation of the motor cortex interact systematically with those brought about by contraction of the muscles of the ipsilateral limb. During the application of flexion torques (up to 50% of maximum) applied at the left wrist, motor evoked potentials (MEPs) were evoked in the quiescent muscles of the right arm by magnetic stimulation of the left motor cortex (M1). The MEPs were obtained prior to and following 10 min of anodal, cathodal or sham DC stimulation of left M1. Cathodal stimulation counteracted increases in the crossed-facilitation of projections to the (right) wrist flexors that otherwise occurred as a result of repeated flexion contractions at the left wrist. In addition, cathodal stimulation markedly decreased the excitability of corticospinal projections to the wrist extensors of the right limb. Thus changes in corticospinal excitability induced by DC stimulation can be shaped (i.e. differentiated by muscle group) by focal contractions of muscles in the limb ipsilateral to the site of stimulation. (C) 2008 Elsevier Ireland Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background. Older adults typically exhibit dramatic reductions in the rate of force development and deficits in the execution of rapid coordinated movements. The purpose of the current study was to investigate the association between the reduced rate of force development exhibited by older adults and the ability to coordinate groups of muscles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In young adults, improvements in the rate of force development as a result of resistance training are accompanied by increases in neural drive in the very initial phase of muscle activation. The purpose of this experiment was to determine if older adults also exhibit similar adaptations in response to rate of force development (RFD) training. Eight young (21-35 years) and eight older (60-79 years) adults were assessed during the production of maximum rapid contractions, before and after four weeks of progressive resistance training for the elbow flexors. Young and older adults exhibited significant increases (P<0.01) in peak RFD, of 25.6% and 28.6% respectively. For both groups the increase in RFD was accompanied by an increase in the root mean square (RMS) amplitude and in the rate of rise (RER) in the electromyogram (EMG) throughout the initial 100 ms of activation. For older adults, however, this training response was only apparent in the brachialis and brachioradialis muscles. This response was not observed in surface EMG recorded from the biceps brachii muscle during either RFD testing or throughout training, nor was it observed in the pronator teres muscle. The minimal adaptations observed for older adults in the bifunctional muscles biceps brachii and pronator teres are considered to indicate a compromise of the neural adaptations older adults might experience in response to resistance training.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim. The purpose of this experiment was to assess the levels of muscle soreness, serum total cholesterol (TC) and creatine kinase (CK) in the first 48 hours following fatiguing eccentric exercise performed with the triceps brachii.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has often been supposed that patterns of rhythmic bimanual coordination in which homologous muscles are engaged simultaneously, are performed in a more stable manner than those in which the same muscles are activated in an alternating fashion. In order to assess the efficacy of this constraint, the present study investigated the effect of forearm posture (prone or supine) on bimanual abduction-adduction movements of the wrist in isodirectional and non-isodirectional modes of coordination. Irrespective of forearm posture, non-isodirectional coordination was observed to be more stable than isodirectional coordination. In the latter condition, there was a more severe deterioration of coordination accuracy/stability as a function of cycling frequency than in the former condition. With elevations in cycling frequency, the performers recruited extra mechanical degrees of freedom, principally via flexion-extension of the wrist, which gave rise to increasing motion in the vertical plane. The increases in movement amplitude in the vertical plane were accompanied by decreasing amplitude in the horizontal plane. In agreement with previous studies, the present findings confirm that the relative timing of homologous muscle activation acts as a principal constraint upon the stability of interlimb coordination. Furthermore, it is argued that the use of manipulations of limb posture to investigate the role of other classes of constraint (e.g. perceptual) should be approached with caution because such manipulations affect the mapping between muscle activation patterns, movement dynamics and kinematics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modulations in the excitability of spinal reflex pathways during passive rhythmic movements of the lower limb have been demonstrated by a number of previous studies [4]. Less emphasis has been placed on the role of supraspinal pathways during passive movement, and on tasks involving the upper limb. In the present study, transcranial magnetic stimulation (TMS) was delivered to subjects while undergoing passive flexion-extension movements of the contralateral wrist. Motor evoked potentials (MEPs) of flexor carpi radialis (FCR) and abductor pollicus brevis (APB) muscles were recorded. Stimuli were delivered in eight phases of the movement cycle during three different frequencies of movement. Evidence of marked modulations in pathway excitability was found in the MEP amplitudes of the FCR muscle, with responses inhibited and facilitated from static values in the extension and flexion phases, respectively. The results indicated that at higher frequencies of movement there was greater modulation in pathway excitability. Paired-pulse TMS (sub-threshold conditioning) at short interstimulus intervals revealed modulations in the extent of inhibition in MEP amplitude at high movement frequencies. In the APE muscle, there was some evidence of phasic modulations of response amplitude, although the effects were less marked than those observed in FCR. It is speculated that these modulatory effects are mediated via Ia afferent pathways and arise as a consequence of the induced forearm muscle shortening and lengthening. Although the level at which this input influences the corticomotoneuronal pathway is difficult to discern, a contribution from cortical regions is suggested. (C) 2001 Published by Elsevier Science B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The control of movement is predicated upon a system of constraints of musculoskeletal and neural origin. The focus of the present study was upon the manner in which such constraints are adapted or superseded during the acquisition of motor skill. Individuals participated in five experimental sessions, ill which they attempted to produce abduction-adduction movements of the index finger in time with an auditory metronome. During each trial, the metronome frequency was increased in eight steps from an individually determined base frequency. Electromyographic (EMC) activity was recorded from first dorsal interosseous (FDI), first volar interosseous (FVI), flexor digitorum superficialis (FDS), and extensor digitorum communis (EDC) muscles. The movements produced on the final day of acquisition more accurately matched the required profile, and exhibited greater spatial and temporal stability, than those generated during initial performance. Tn the early stages of skill acquisition, an alternating pattern of activation in FDI and FVI was maintained, even at the highest frequencies. Tn contrast, as the frequency of movement was increased, activity in FDS and EDC was either tonic or intermittent. As learning proceeded, alterations in recruitment patterns were expressed primarily in the extrinsic muscles (EDC and FDS). These changes took the form of increases in the postural role of these muscles, shifts to phasic patterns of activation, or selective disengagement of these muscles. These findings suggest that there is considerable flexibility in the composition of muscle synergies, which is exploited by individuals during the acquisition of coordination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To characterize the biophysical, pharmacologic, and functional properties of the Ca(2+)-activated Cl(-) current in retinal arteriolar myocytes. METHODS: Whole-cell perforated patch-clamp recordings were made from myocytes within intact isolated arteriolar segments. Arteriolar tone was assessed using pressure myography. RESULTS: Depolarizing of voltage steps to -40 mV and greater activated an L-type Ca(2+) current (I(Ca(L))) that was followed by a sustained current. Large tail currents (I(tail)) were observed on stepping back to -80 mV. The sustained current and I(tail) reversed close to 0 mV in symmetrical Cl(-) concentrations. The ion selectivity sequence for I(tail) was I(-)> Cl(-)> glucuronate. Outward I(tail) was sensitive to the Cl(-) channel blockers 9-anthracene-carboxylic acid (9-AC; 1 mM), 4-acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic acid (SITS; 1 mM), and disodium 4,4'-diisothiocyanatostilbene-2,2'-disulfonate (DIDS; 1 mM), but only DIDS produced a substantial (78%) block of inward tail currents at -100 mV. I(tail) was decreased in magnitude when the normal bathing medium was substituted with Ca(2+)-free solution or if I(Ca(L)) was inhibited by 1 microM nimodipine. Caffeine (10 mM) produced large transient currents that reversed close to the Cl(-) equilibrium potential and were blocked by 1 mM DIDS or 100 microM tetracaine. DIDS had no effect on basal vascular tone in pressurized arterioles but dramatically reduced the level of vasoconstriction observed in the presence of 10 nM endothelin-1. CONCLUSIONS: Retinal arteriolar myocytes have I(Cl(Ca)), which may be activated by Ca(2+) entry through L-type Ca(2+) channels or Ca(2+) release from intracellular stores. This current appears to contribute to agonist-induced retinal vasoconstriction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND & AIMS: Downstream effects of muscarinic receptor stimulation in intestinal smooth muscle include contraction and intestinal transit. We thought to determine whether classic transient receptor potential (TRPC) channels integrate the intracellular signaling cascades evoked by the stimulated receptors and thereby contribute to the control of the membrane potential, Ca-influx, and cell responses. METHODS: We created trpc4-, trpc6-, and trpc4/trpc6-gene-deficient mice and analyzed them for intestinal smooth muscle function in vitro and in vivo. RESULTS: In intestinal smooth muscle cells TRPC4 forms a 55 pS cation channel and underlies more than 80% of the muscarinic receptor-induced cation current (mI(CAT)). The residual mI(CAT) depends on the expression of TRPC6, indicating that TRPC6 and TRPC4 determine mI(CAT) channel activity independent of other channel subunits. In TRPC4-deficient ileal myocytes the carbachol-induced membrane depolarizations are diminished greatly and the atropine-sensitive contraction elicited by acetylcholine release from excitatory motor neurons is reduced greatly. Additional deletion of TRPC6 aggravates these effects. Intestinal transit is slowed down in mice lacking TRPC4 and TRPC6. CONCLUSIONS: In intestinal smooth muscle cells TRPC4 and TRPC6 channels are gated by muscarinic receptors and are responsible for mI(CAT). They couple muscarinic receptors to depolarization of intestinal smooth muscle cells and voltage-activated Ca(2+)-influx and contraction, and thereby accelerate small intestinal motility in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bradykinin-related peptides (BRPs) represent one of the most widespread and closely studied families of amphibian defensive skin secretion peptides. Apart from canonical bradykinin (RPPGFSPFR) that was first reported in skin extracts of the European brown frog, Rana temporaria, many additional site-substituted, N- and/or C-terminally extended peptides have been isolated from skin extracts and secretions from representative species of the families Ranidae, Hylidae, Bombinatoridae and Leiopelmatidae. The most diverse range of BRPs has been found in ranid frog skin secretions and this probably reflects the diversity and number of species studied and their associated life histories within this taxon. Amolops (torrent or cascade frogs) is a genus within the Ranidae that has been poorly studied. Here we report the presence of two novel BRPs in the skin secretions of the Chinese Wuyi Mountain torrent frog (Amolops wuyiensis). Amolopkinins W1 and W2 are dodecapeptides differing in only one amino acid residue at position 2 (Val/Ala) that are essentially (Leu1, Thr6)-bradykinins extended at the N-terminus by either RVAL (W1) or RAAL (W2). Amolopkinins W1 and W2 are structurally similar to amolopkinin L1 from Amolops loloensis and the major BRP (Leu1, Thr6, Trp8)-bradykinin from the skin of the Japanese frog, Rana sakuraii. A. wuyiensis amolopkinins were separately encoded as single copies within discrete precursors of 61 amino acid residues as deduced from cloned skin cDNA. Synthetic replicates of both peptides were found to potently antagonize the contractile effects of canonical bradykinin on isolated rat ileum smooth muscle preparations. Amolopkinins thus appear to represent a novel sub-family of ranid frog skin secretion BRPs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tachykinins are among the most widely-studied families of regulatory peptides characterized by a highly-conserved C-terminal -Phe-X-Gly-Leu-Met.amide motif, which also constitutes the essential bioactive core. The amphibian skin has proved to be a rich source of these peptides with physalaemin from the skin of Physalaemus fuscomaculatus representing the archetypal aromatic tachykinin (X = Tyr or Phe) and kassinin from the skin of Kassina senegalensis representing the archetypal aliphatic tachykinin in which X = Val or Ile. Despite the primary structures of both mature peptides having been known for at least 30 years, neither the structures nor organizations of their biosynthetic precursors have been reported. Here we report the structure and organization of the biosynthetic precursor of kassinin deduced from cDNA cloned from a skin secretion library. In addition, a second precursor cDNA encoding the novel kassinin analog (Thr2, Ile9)-kassinin was identified as was the predicted mature peptide in skin secretion. Both transcripts exhibited a high degree of nucleotide sequence similarity and of open-reading frame translated amino acid sequences of putative precursor proteins. The translated preprotachykinins each consisted of 80 amino acid residues encoding single copies of either kassinin or its site-substituted analog. Synthetic replicates of each kassinin were found to be active on rat urinary bladder smooth muscle at nanomolar concentrations. The structural organization of both preprotachykinins differs from that previously reported for those of Odorrana grahami skin indicating a spectrum of diversity akin to that established for amphibian skin preprobradykinins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reaching to visual targets engages the nervous system in a series of transformations between sensory information and motor commands. That which remains to be determined is the extent to which the processes that mediate sensorimotor adaptation to novel environments engage neural circuits that represent the required movement in joint-based or muscle-based coordinate systems. We sought to establish the contribution of these alternative representations to the process of visuomotor adaptation. To do so we applied a visuomotor rotation during a center-out isometric torque production task that involved flexion/extension and supination/pronation at the elbow-joint complex. In separate sessions, distinct half-quadrant rotations (i.e., 45°) were applied such that adaptation could be achieved either by only rescaling the individual joint torques (i.e., the visual target and torque target remained in the same quadrant) or by additionally requiring torque reversal at a contributing joint (i.e., the visual target and torque target were in different quadrants). Analysis of the time course of directional errors revealed that the degree of adaptation was lower (by ~20%) when reversals in the direction of joint torques were required. It has been established previously that in this task space, a transition between supination and pronation requires the engagement of a different set of muscle synergists, whereas in a transition between flexion and extension no such change is required. The additional observation that the initial level of adaptation was lower and the subsequent aftereffects were smaller, for trials that involved a pronation–supination transition than for those that involved a flexion–extension transition, supports the conclusion that the process of adaptation engaged, at least in part, neural circuits that represent the required motor output in a muscle-based coordinate system.