121 resultados para nanoscale bainite
Resumo:
Dendritic molecules have well defined, three-dimensional branched architectures, and constitute a unique nanoscale toolkit. This review focuses on examples in which individual dendritic molecules are assembled into more complex arrays via non-covalent interactions. In particular, it illustrates how the structural information programmed into the dendritic architecture controls the assembly process, and as a consequence, the properties of the supramolecular structures which are generated. Furthermore, the review emphasises how the use of non-covalent (supramolecular) interactions, provides the assembly process with reversibility, and hence a high degree of control. The review also illustrates how self-assembly offers an ideal approach for amplifying the branching of small, synthetically accessible, relatively inexpensive dendritic systems (e.g. dendrons), into highly branched complex nanoscale assemblies.
The review begins by considering the assembly of dendritic molecules to generate discrete, well-defined supramolecular assemblies. The variety of possible assembled structures is illustrated, and the ability of an assembled structure to encapsulate a templating unit is described. The ability of both organic and inorganic building blocks to direct the assembly process is discussed. The review then describes larger discrete assemblies of dendritic molecules, which do not exist as a single well-defined species, but instead exist as statistical distributions. For example, assembly around nanoparticles, the assembly of amphiphilic dendrons and the assembly of dendritic systems in the presence of DNA will all be discussed. Finally, the review examines dendritic molecules, which assemble or order themselves into extended arrays. Such systems extend beyond the nanoscale into the microscale or even the macroscale domain, exhibiting a wide range of different architectures. The ability of these assemblies to act as gel-phase or liquid crystalline materials will be considered.
Taken as a whole, this review emphasises the control and tunability that underpins the assembly of nanomaterials using dendritic building blocks, and furthermore highlights the potential future applications of these assemblies at the interfaces between chemistry, biology and materials science.
Analysis of deformation behavior and workability of advanced 9Cr-Nb-V ferritic heat resistant steels
Resumo:
Hot compression tests were carried out on 9Cr–Nb–V heat resistant steels in the temperature range of 600–1200 °C and the strain rate range of 10−2–100 s−1 to study their deformation characteristics. The full recrystallization temperature and the carbon-free bainite phase transformation temperature were determined by the slope-change points in the curve of mean flow stress versus the inverse of temperature. The parameters of the constitutive equation for the experimental steels were calculated, including the stress exponent and the activation energy. The lower carbon content in steel would increase the fraction of precipitates by increasing the volume of dynamic strain-induced (DSIT) ferrite during deformation. The ln(εc) versus ln(Z) and the ln(σc) versus ln(Z) plots for both steels have similar trends. The efficiency of power dissipation maps with instability maps merged together show excellent workability from the strain of 0.05 to 0.6. The microstructure of the experimental steels was fully recrystallized upon deformation at low Z value owing to the dynamic recrystallization (DRX), and exhibited a necklace structure under the condition of 1050 °C/0.1 s−1 due to the suppression of the secondary flow of DRX. However, there were barely any DRX grains but elongated pancake grains under the condition of 1000 °C/1 s−1 because of the suppression of the metadynamic recrystallization (MDRX).
Resumo:
We revisit the problem of forces on atoms under current in nanoscale conductors. We derive and discuss the five principal kinds of force under steady-state conditions from a simple standpoint that—with the help of background literature—should be accessible to physics undergraduates. The discussion aims at combining methodology with an emphasis on the underlying physics through examples. We discuss and compare two forces present only under current—the non-conservative electron wind force and a Lorentz-like velocity-dependent force. It is shown that in metallic nanowires both display significant features at the wire surface, making it a candidate for the nucleation of current-driven structural transformations and failure. Finally we discuss the problem of force noise and the limitations of Ehrenfest dynamics
Resumo:
This paper investigates the mechanism of nanoscale fatigue of functionally graded TiN/TiNi films using nano-impact and multiple-loading-cycle nanoindentation tests. The functionally graded films were deposited on silicon substrate, in which TiNi films maintain shape memory and pseudo elastic behavior, while a modified TiN surface layer provides tribological and anti-corrosion properties. Nanomechanical tests were performed to comprehend the localized film performance and failure modes of the functionally graded film using NanoTestTM equipped with Berkovich and conical indenter between 100 μN to 500 mN loads. The loading mechanism and load history are critical to define film failure modes (i.e. backward depth deviation) including the shape memory effect of the functionally graded layer. The results are sensitive to the applied load, loading type (e.g. semi-static, dynamic) and probe geometry. Based on indentation force-depth profiles, depth-time data and post-test surface observations of films, it is concluded that the shape of the nanoindenter is critical in inducing the localized indentation stress and film failure, including shape recovery at the lower load range. Elastic-plastic finite element (FE) simulation during nanoindentation loading indicated that the location of subsurface maximum stress near the interface influences the backward depth deviation type of film failure. A standalone, molecular dynamics simulation was performed with the help of a long range potential energy function to simulate the tensile test of TiN nanowire with two different aspect ratios to investigate the theory of its failure mechanism.
Resumo:
Nanoparticles offer alternative options in cancer therapy both as drug delivery carriers and as direct therapeutic agents for cancer cell inactivation. More recently, gold nanoparticles (AuNPs) have emerged as promising radiosensitizers achieving significantly elevated radiation dose enhancement factors when irradiated with both kilo-electron-volt and mega-electronvolt X-rays. Use of AuNPs in radiobiology is now being intensely driven by the desire to achieve precise energy deposition in tumours. As a consequence, there is a growing demand for efficient and simple techniques for detection, imaging and characterization of AuNPs in both biological and tumour samples. Spatially accurate imaging on the nanoscale poses a serious challenge requiring high- or super-resolution imaging techniques. In this mini review, we discuss the challenges in using AuNPs as radiosensitizers as well as various current and novel imaging techniques designed to validate the uptake, distribution and localization in mammalian cells. In our own work, we have used multiphoton excited plasmon resonance imaging to map the AuNP intracellular distribution. The benefits and limitations of this approach will also be discussed in some detail. In some cases, the same "excitation" mechanism as is used in an imaging modality can be harnessed tomake it also a part of therapymodality (e.g. phototherapy)-such examples are discussed in passing as extensions to the imaging modality concerned.
Resumo:
The dielectric properties of BaTiO3 thin films and multilayers are different from bulk materials because of nanoscale dimensions, interfaces, and stress-strain conditions. In this study, BaTiO3/SrTiO3 multilayers deposited on SrTiO3 substrates by pulsed laser deposition have been investigated by high-energy-resolution electron energy-loss spectroscopy. The fine structures in the spectra are discussed in terms of crystal-field splitting and the internal strain. The crystal-field splitting of the BaTiO3 thin layer is found to be a little larger than that of bulk BaTiO3, which has been interpreted by the presence of the internal strain induced by the misfit at the interface. This finding is consistent with the lattice parameters of the BaTiO3 thin layer determined by the selected area diffraction pattern. The near-edge structure of the oxygen K edge in BaTiO3 thin layers and in bulk BaTiO3 are simulated by first-principle self-consistent full multiple-scattering calculations. The results of the simulations are in a good agreement with the experimental results. Moreover, the aggregation of oxygen vacancies at the rough BaTiO3/SrTiO3 interface is indicated by the increased [Ti]/[O] element ratio, which dominates the difference of dielectric properties between BaTiO3 layer and bulk materials.
Resumo:
Power has become a key constraint in current nanoscale integrated circuit design due to the increasing demands for mobile computing and a low carbon economy. As an emerging technology, an inexact circuit design offers a promising approach to significantly reduce both dynamic and static power dissipation for error tolerant applications. Although fixed-point arithmetic circuits have been studied in terms of inexact computing, floating-point arithmetic circuits have not been fully considered although require more power. In this paper, the first inexact floating-point adder is designed and applied to high dynamic range (HDR) image processing. Inexact floating-point adders are proposed by approximately designing an exponent subtractor and mantissa adder. Related logic operations including normalization and rounding modules are also considered in terms of inexact computing. Two HDR images are processed using the proposed inexact floating-point adders to show the validity of the inexact design. HDR-VDP is used as a metric to measure the subjective results of the image addition. Significant improvements have been achieved in terms of area, delay and power consumption. Comparison results show that the proposed inexact floating-point adders can improve power consumption and the power-delay product by 29.98% and 39.60%, respectively.
Resumo:
Power has become a key constraint in nanoscale inte-grated circuit design due to the increasing demands for mobile computing and higher integration density. As an emerging compu-tational paradigm, an inexact circuit offers a promising approach to significantly reduce both dynamic and static power dissipation for error-tolerant applications. In this paper, an inexact floating-point adder is proposed by approximately designing an exponent sub-tractor and mantissa adder. Related operations such as normaliza-tion and rounding are also dealt with in terms of inexact computing. An upper bound error analysis for the average case is presented to guide the inexact design; it shows that the inexact floating-point adder design is dependent on the application data range. High dynamic range images are then processed using the proposed inexact floating-point adders to show the validity of the inexact design; comparison results show that the proposed inexact floating-point adders can improve the power consumption and power-delay product by 29.98% and 39.60%, respectively.
Resumo:
The creation of large magnetic fields is a necessary component in many technologies, ranging from magnetic resonance imaging, electric motors and generators, and magnetic hard disk drives in information storage. This is typically done by inserting a ferromagnetic pole piece with a large magnetisation density MS in a solenoid. In addition to large MS, it is usually required or desired that the ferromagnet is magnetically soft and has a Curie temperature well above the operating temperature of the device. A variety of ferromagnetic materials are currently in use, ranging from FeCo alloys in, for example, hard disk drives, to rare earth metals operating at cryogenic temperatures in superconducting solenoids. These latter can exceed the limit on MS for transition metal alloys given by the Slater-Pauling curve. This article reviews different materials and concepts in use or proposed for technological applications that require a large MS, with an emphasis on nanoscale material systems, such as thin and ultra-thin films. Attention is also paid to other requirements or properties, such as the Curie temperature and magnetic softness. In a final summary, we evaluate the actual applicability of the discussed materials for use as pole tips in electromagnets, in particular, in nanoscale magnetic hard disk drive read-write heads; the technological advancement of the latter has been a very strong driving force in the development of the field of nanomagnetism.
Resumo:
Conducting atomic force microscopy images of bulk semiconducting BaTiO3 surfaces show clear stripe domain contrast. High local conductance correlates with strong out-of-plane polarization (mapped independently using piezoresponse force microscopy), and current- voltage characteristics are consistent with dipole-induced alterations in Schottky barriers at the metallic tip-ferroelectric interface. Indeed, analyzing current-voltage data in terms of established Schottky barrier models allows relative variations in the surface polarization, and hence the local domain structure, to be determined. Fitting also reveals the signature of surface-related depolarizing fields concentrated near domain walls. Domain information obtained from mapping local conductance appears to be more surface-sensitive than that from piezoresponse force microscopy. In the right materials systems, local current mapping could therefore represent a useful complementary technique for evaluating polarization and local electric fields with nanoscale resolution.
Resumo:
The blocking of ion transport at interfaces strongly limits the performance of electrochemical nanodevices for energy applications. The barrier is believed to arise from space-charge regions generated by mobile ions by analogy to semiconductor junctions. Here we show that something different is at play by studying ion transport in a bicrystal of yttria (9% mol) stabilized zirconia (YSZ), an emblematic oxide ion conductor. Aberration-corrected scanning transmission electron microscopy (STEM) provides structure and composition at atomic resolution, with the sensitivity to directly reveal the oxygen ion profile. We find that Y segregates to the grain boundary at Zr sites, together with a depletion of oxygen that is confined to a small length scale of around 0.5 nm. Contrary to the main thesis of the space-charge model, there exists no evidence of a long-range O vacancy depletion layer. Combining ion transport measurements across a single grain boundary by nanoscale electrochemical strain microscopy (ESM), broadband dielectric spectroscopy measurements, and density functional calculations, we show that grain-boundary-induced electronic states act as acceptors, resulting in a negatively charged core. Ultimately, it is this negative charge which gives rise to the barrier for ion transport at the grain boundary
Resumo:
The second harmonic generation (SHG) intensity spectrum of SiC, ZnO, GaN two-dimensional hexagonal crystals is calculated by using a real-time first-principles approach based on Green's function theory [Attaccalite et al., Phys. Rev. B: Condens. Matter Mater. Phys. 2013 88, 235113]. This approach allows one to go beyond the independent particle description used in standard first-principles nonlinear optics calculations by including quasiparticle corrections (by means of the GW approximation), crystal local field effects and excitonic effects. Our results show that the SHG spectra obtained using the latter approach differ significantly from their independent particle counterparts. In particular they show strong excitonic resonances at which the SHG intensity is about two times stronger than within the independent particle approximation. All the systems studied (whose stabilities have been predicted theoretically) are transparent and at the same time exhibit a remarkable SHG intensity in the range of frequencies at which Ti:sapphire and Nd:YAG lasers operate; thus they can be of interest for nanoscale nonlinear frequency conversion devices. Specifically the SHG intensity at 800 nm (1.55 eV) ranges from about 40-80 pm V(-1) in ZnO and GaN to 0.6 nm V(-1) in SiC. The latter value in particular is 1 order of magnitude larger than values in standard nonlinear crystals.
Resumo:
There is considerable interest in the use of heavy atom nanoparticles as theranostic contrast agents due to their high radiation cross-section compared to soft tissue. However, published studies have primarily focused on applications of gold nanoparticles. This study applies Monte Carlo radiation transport modelling using Geant4 to evaluate the macro- and micro-scale radiation dose enhancement following X-ray irradiation with both imaging and therapeutic energies on nanoparticles consisting of stable elements heavier than silicon. An approach based on the Local Effect Model was also used to assess potential biological impacts. While macroscopic dose enhancement is well predicted by simple absorption cross-sections, nanoscale dose deposition has a much more complex dependency on atomic number, with local maxima around germanium (Z = 32) and gadolinium (Z = 64), driven by variations in secondary Auger electron spectra, which translate into significant variations in biological effectiveness. These differences may provide a valuable tool for predicting and elucidating fundamental mechanisms of these agents as they move towards clinical application.
Resumo:
Abnormal anti-Stokes Raman scattering (AASR) was unambiguously observed in carbon nanotubes (CNT's). In contrast to traditional Raman scattering theory, the absolute value of the Raman frequency of the anti-Stokes peak is not the same as that of the corresponding Stokes peak. It was demonstrated that AASR scattering originates from the unique nanoscale cylindrical structure of CNT's that can be considered naturally as a graphite structure with an intrinsic defect from its rolling. The double-resonance Raman scattering theory was applied to interpret the scattering mechanism of the AASR phenomenon successfully and quantitatively.
Resumo:
A new type of focal-palne array made of a nanoscale metal screen mimics the function of a lens, focuses light (and plasmons) into subwavelength hot spots, and achieves high-resolution imaging of complex sources.