191 resultados para intracellular membrane
Resumo:
Prothrombin interacts with phosphatidylserine containing platelet membranes via its N-terminal, gamma-carboxyglutamate (gla) residue-rich domain. Once bound it is cleaved to form the active protease, thrombin (factor IIa). Human prothrombin was cleaved with cathepsin G in the absence of calcium and magnesium ions. Under these conditions, the gla domain was removed. Phospholipid protected the protein from this proteolytic event, and this suggests that a conformational change may be induced by interaction with phospholipids. Binding of prothrombin to a surface containing 20% phosphatidylserine/80% phosphatidylcholine was detected by surface plasmon resonance, whereas no interaction with gla-domainless prothrombin was observed. Binding of intact prothrombin in the presence of calcium ions showed complex association kinetics, suggesting multiple modes of initial interaction with the surface. The kinetics of the dissociation phase could be fitted to a two-phase, exponential decay. This implies that there are at least two forms of the protein on the surface one of which dissociates tenfold more slowly than the other. Taken together, these data suggest that, on binding to a membrane surface, prothrombin undergoes a conformational change to a form which binds more tightly to the membrane.
Resumo:
Diabetes mellitus was induced in male beagles by a single injection of an alloxan and streptozotocin cocktail and fasting blood sugar levels maintained between 15 and 20 mmol/l. Five years after induction of diabetes, three diabetic animals were sacrificed, together with sex and age-matched controls, and the retinas fixed for either transmission electron microscopy (TEM) or trypsin digestion. In TEM specimens, capillaries in close proximity to the major vessels were designated as either AE (arterial environment) or VE (venous environment) and the thickness of their basement membranes (BMs) measured using an image analyser based two dimensional morphometric analysis system. Results show that the BMs of retinal capillaries from the diabetic dogs were significantly thicker than those from control dogs. Furthermore, within the diabetic group the AE capillaries had thicker BMs than VE capillaries (p less than or equal to 0.05). The controls, however, showed no significant difference in BM thickness between AE and VE capillaries. Although many of the capillaries designated as AE or VE would actually have been derived from the opposite side of the circulation, with respect to BM thickness, they conformed to values of their specific group. The conclusion is that diabetic capillaries are more vulnerable to BM thickening in an arterial environment than in a venous environment.
Resumo:
Context Extracorporeal membrane oxygenation (ECMO) can support gas exchange in patients with severe acute respiratory distress syndrome (ARDS), but its role has remained controversial. ECMO was used to treat patients with ARDS during the 2009 influenza A(H1N1) pandemic.
Resumo:
In this study it has been demonstrated that mixtures of two solid drugs, ibuprofen and methyl nicotinate, with different but complementary pharmacological activities and which exist as a single liquid phase over a wide composition range at skin temperature, can be formulated as o/w emulsions without the use of an additional hydrophobic carrier. These novel dual drug systems provided significantly enhanced in vitro penetration rates through a model lipophilic barrier membrane compared to conventional individual formulations of each active. Thus, for ibuprofen, drug penetration flux enhancements of three- and 10-fold were observed when compared to an aqueous ibuprofen suspension and a commercial alcohol-based ibuprofen formulation, respectively. Methyl nicotinate penetration rates were shown to be similar for aqueous gels and emulsified systems. Mechanisms explaining these observations are proposed. Novel dual drug formulations of ibuprofen and methyl nicotinate, formulated within the liquid range at skin temperature, were investigated by oscillatory rheology and texture profile analysis. demonstrating the effects of drug and viscosity enhancer concentrations, and disperse phase type upon the rheological, mechanical and drug penetration properties of these systems. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
The pH-dependent fluorescence behavior of two regioisomeric 'receptor(1)-spacer(1)-fluorophore-spacer(2)-receptor(2)' systems 1 and 2 in micellar solutions of sodium dodecyl sulfate show that photoinduced electron transfer (PET) only occurs from the amine group connected to the 4-amino position of the aminonaphthalimide fluorophore in both cases. This demonstrates the directing influence of the photogenerated electric field within the aminonaphthalimide excited state on the electron transfer process. Since path-selectivity of PET is also known within the membrane-bound photosynthetic reaction center in bacteria, its origins may be illuminated by the simple experiments described here. (C) 2011 Elsevier B. V. All rights reserved.
Resumo:
Burkholderia cenocepacia is a Gram-negative opportunistic pathogen of patients with cystic fibrosis and chronic granulomatous disease. The bacterium survives intracellularly in macrophages within a membrane-bound vacuole (BcCV) that precludes the fusion with lysosomes. The underlying cellular mechanisms and bacterial molecules mediating these phenotypes are unknown. Here, we show that intracellular B. cenocepacia expressing a type VI secretion system (T6SS) affects the activation of the Rac1 and Cdc42 RhoGTPase by reducing the cellular pool of GTP-bound Rac1 and Cdc42. The T6SS also increases the cellular pool of GTP-bound RhoA and decreases cofilin activity. These effects lead to abnormal actin polymerization causing collapse of lamellipodia and failure to retract the uropod. The T6SS also prevents the recruitment of soluble subunits of the NADPH oxidase complex including Rac1 to the BcCV membrane, but is not involved in the BcCV maturation arrest. Therefore, T6SS-mediated deregulation of Rho family GTPases is a common mechanism linking disruption of the actin cytoskeleton and delayed NADPH oxidase activation in macrophages infected with B. cenocepacia.