120 resultados para interaction fungi-host cells
Resumo:
Ultraviolet B (UVB) light is known to be immunosuppressive, but, probably because of a small UVC component in the emission spectra of some of the UVB lamps used, reports vary on effective dose levels. To prevent potentially lethal graft-versus-host disease (GVHD) after allogeneic bone marrow transplantation, alloreactive donor T-cell activity must be suppressed. In this study, a narrow wavelength UVB lamp (TL01, 312 nm peak emission) was used to determine what doses of UVB were required to abolish rat lymphocyte proliferation while simultaneously preserving rat bone marrow progenitor cell and primitive hematopoietic stem cell viability. Lymphocyte proliferation, as measured by 3H-Thymidine incorporation, in response to lectin stimulation was abolished below detection at doses greater than 3,500 J/m2. When T-cell clonogenicity was measured in a limiting dilution assay, a small fraction (0.6%) was maintained at doses up to 4,000 J/m2. Cytotoxic T-lymphocyte (CTL) activity was reduced after treatment with 4,000 J/m2, but a significant level of cytotoxicity was still maintained. Natural killer cell cytolytic activity was not affected by doses up to 4,000 J/m2. At 4,000 J+m2 there was a 10% survival of colony-forming units-granulocyte-macrophage; a 1% and 4% survival of day-8 and day-12 colony-forming units-spleen, respectively; and 11% survival of marrow repopulating ability cells. Up to 25% of late cobblestone area forming cells (4 to 5 weeks), reflecting the more immature hematopoietic stem cells, were preserved in bone marrow treated with 4,000 J/m2, indicating that early stem cells are less sensitive to UVB damage than are more committed progenitor cells. Thus, a potential therapeutic window was established at approximately 4,000 J/m2 using this light source, whereby the potentially GVHD-inducing T cells were suppressed, but a sufficient proportion of the cells responsible for engraftment was maintained.
Resumo:
This review describes an approach to the prevention of graft-versus-host disease (GVHD) and graft rejection following allogeneic BMT that differs from conventional methods. Ultraviolet (UV) irradiation inhibits the proliferative responses of lymphoid cells to mitogens and alloantigens by inactivation of T lymphocytes and dendritic cells, and in animal models this can prevent both GVHD and graft rejection. It is important that the marrow repopulating capacity of haemopoietic stem cells is not damaged by the irradiation process. We have found that polymorphic microsatellite markers are a sensitive way of assessing the impact of UV irradiation on chimerism after BMT in rodents.
Resumo:
Despite recent therapeutic advances, the response rates to chemotherapy for patients with metastatic colon cancer remain at approximately 50% with the fluoropyrimidine, 5-fluorouracil (5-FU), continuing to serve as the foundation chemotherapeutic agent for the treatment of this disease. Previous studies have demonstrated that overexpression of thymidylate synthase (TS) is a key determinant of resistance to 5-FU-based chemotherapy. Therefore, there is a significant need to develop alternative therapeutic strategies to overcome TS-mediated resistance. In this study, we demonstrate that the histone deacetylase inhibitors (HDACi) vorinostat and LBH589 significantly downregulate TS gene expression in a panel of colon cancer cell lines. Downregulation of TS was independent of p53, p21 and HDAC2 expression and was achievable in vivo as demonstrated by mouse xenograft models. We provide evidence that HDACi treatment leads to a potent transcriptional repression of the TS gene. Combination of the fluoropyrimidines 5-FU or FUdR with both vorinostat and LBH589 enhanced cell cycle arrest and growth inhibition. Importantly, the downstream effects of TS inhibition were significantly enhanced by this combination including the inhibition of acute TS induction and the enhanced accumulation of the cytotoxic nucleotide intermediate dUTP. These data demonstrate that HDACi repress TS expression at the level of transcription and provides the first evidence suggesting a direct mechanistic link between TS downregulation and the synergistic interaction observed between HDACi and 5-FU. This study provides rationale for the continued clinical evaluation of HDACi in combination with 5-FU-based therapies as a strategy to overcome TS-mediated resistance.
Resumo:
Objectives: Fibroblasts play a significant role as regulators of the host response in periodontal disease, responding to bacterial stimulation by producing an array of inflammatory cytokines and chemokines. LL-37, a host defence peptide, inhibits LPS-induced cytokine signalling in macrophages, suggesting an immunomodulatory role. The objective was to investigate the interaction between LL-37 and gingival fibroblasts – both its direct regulation of fibroblast activity and its effect on fibroblast response to LPS activation. Methods: Human gingival fibroblasts (HGFs) were incubated for 24 hours in the presence of either P. gingivalis LPS (10µg/ml) or E. coli LPS (10ng/ml) along with LL-37 (0-50 µg/ml). IL-6 and IL-8 production by HGFs in the conditioned medium was determined by ELISA. Western blot was performed to determine the effect of LL-37 on LPS -induced IκBα degradation in HGFs following LPS stimulation over 2 hours. DNA microarray analysis was performed on cell populations incubated for 6 hr in the presence or absence of the peptide. Confirmation of LL-37 effects on specific gene expression was obtained by QPCR. Results: At low concentrations (≤ 5 µg/ml) LL-37 significantly inhibited LPS-induced cytokine production by HGFs. At higher concentrations LL-37 induced IL-8 production independent of LPS. Addition of LL-37 blocked LPS-induced IκBα degradation in HGFs. Microarray analysis revealed that LL-37 (50µg/ml) upregulated a significant number of cytokines and chemokines by > 5 fold. Upregulation of five of these, CXCL1, CXCL2, CXCL3, IL-24 and IL-8 was confirmed by Q-PCR. Conclusion: The host defence peptide LL-37, the only known human cathelicidin, appears to have pleiotrophic effects in innate immunity. At least some of these are mediated through cytokine and chemokine signalling networks. The ability of LL-37 to reduce bacterial LPS-induced cytokine production in gingival fibroblasts, at low concentrations, suggests a potential therapeutic role in the management of periodontal disease.
Resumo:
Therapies that are safe, effective, and not vulnerable to developing resistance are highly desirable to counteract bacterial infections. Host-directed therapeutics is an antimicrobial approach alternative to conventional antibiotics based on perturbing host pathways subverted by pathogens during their life cycle by using host-directed drugs. In this study, we identified and evaluated the efficacy of a panel of host-directed drugs against respiratory infection by nontypeable Haemophilus influenzae (NTHi). NTHi is an opportunistic pathogen that is an important cause of exacerbation of chronic obstructive pulmonary disease (COPD). We screened for host genes differentially expressed upon infection by the clinical isolate NTHi375 by analyzing cell whole-genome expression profiling and identified a repertoire of host target candidates that were pharmacologically modulated. Based on the proposed relationship between NTHi intracellular location and persistence, we hypothesized that drugs perturbing host pathways used by NTHi to enter epithelial cells could have antimicrobial potential against NTHi infection. Interfering drugs were tested for their effects on bacterial and cellular viability, on NTHi-epithelial cell interplay, and on mouse pulmonary infection. Glucocorticoids and statins lacked in vitro and/or in vivo efficacy. Conversely, the sirtuin-1 activator resveratrol showed a bactericidal effect against NTHi, and the PDE4 inhibitor rolipram showed therapeutic efficacy by lowering NTHi375 counts intracellularly and in the lungs of infected mice. PDE4 inhibition is currently prescribed in COPD, and resveratrol is an attractive geroprotector for COPD treatment. Together, these results expand our knowledge of NTHi-triggered host subversion and frame the antimicrobial potential of rolipram and resveratrol against NTHi respiratory infection.
Resumo:
Context. The magnetic activity of planet-hosting stars is an importantfactor for estimating the atmospheric stability of close-in exoplanetsand the age of their host stars. It has long been speculated thatclose-in exoplanets can influence the stellar activity level. However,testing for tidal or magnetic interaction effects in samples ofplanet-hosting stars is difficult because stellar activity hindersexoplanet detection, so that stellar samples with detected exoplanetsshow a bias toward low activity for small exoplanets.
Aims: Weaim to test whether exoplanets in close orbits influence the stellarrotation and magnetic activity of their host stars.
Methods: Wedeveloped a novel approach to test for systematic activity-enhancementsin planet-hosting stars. We use wide (several 100 AU) binary systems inwhich one of the stellar components is known to have an exoplanet, whilethe second stellar component does not have a detected planet andtherefore acts as a negative control. We use the stellar coronal X-rayemission as an observational proxy for magnetic activity and analyzeobservations performed with Chandra and XMM-Newton.
Results: Wefind that in two systems for which strong tidal interaction can beexpected the planet-hosting primary displays a much higher magneticactivity level than the planet-free secondary. In three systems forwhich weaker tidal interaction can be expected the activity levels ofthe two stellar components agree with each other.
Conclusions:Our observations indicate that the presence of Hot Jupiters may inhibitthe spin-down of host stars with thick outer convective layers. Possiblecauses for this effect include a transfer of angular momentum from theplanetary orbit to the stellar rotation through tidal interaction, ordifferences during the early evolution of the system, where the hoststar may decouple from the protoplanetary disk early because of a gapopened by the forming Hot Jupiter.
Resumo:
Evidence that persistent environmental pollutants may target the male reproductive system is increasing. The male reproductive system is regulated by secretion of testosterone by testicular Leydig cells, and perturbation of Leydig cell function may have ultimate consequences. 3-Methylsulfonyl-DDE (3-MeSO2-DDE) is a potent adrenal toxicants formed from the persistent insecticide DDT. Although studies have revealed the endocrine disruptive effect of 3-MeSO2-DDE, the underlying mechanisms at cellular level in steroidogenic Leydig cells remains to be established. The current study addresses the effect of 3-MeSO2-DDE on viability, hormone production and proteome response of primary neonatal porcine Leydig cells. The AlamarBlue™ assay was used to evaluate cell viability. Solid phase radioimmunoassay was used to measure concentration of hormones produced by both unstimulated and Luteinizing hormone (LH)-stimulated Leydig cells following 48h exposure. Protein samples from Leydig cells exposed to a non-cytotoxic concentration of 3-MeSO2-DDE (10μM) were subjected to nano-LC-MS/MS and analyzed on a Q Exactive mass spectrometer and quantified using label-free quantitative algorithm. Gene Ontology (GO) and Ingenuity Pathway Analysis (IPA) were carried out for functional annotation and identification of protein interaction networks. 3-MeSO2-DDE regulated Leydig cell steroidogenesis differentially depending on cell culture condition. Whereas its effect on testosterone secretion at basal condition was stimulatory, the effect on LH-stimulated cells was inhibitory. From triplicate experiments, a total of 6804 proteins were identified in which the abundance of 86 proteins in unstimulated Leydig cells and 145 proteins in LH-stimulated Leydig cells was found to be significantly regulated in response to 3-MeSO2-DDE exposure. These proteins not only are the first reported in relation to 3-MeSO2-DDE exposure, but also display small number of proteins shared between culture conditions, suggesting the action of 3-MeSO2-DDE on several targeted pathways, including mitochondrial dysfunction, oxidative phosphorylation, EIF2-signaling, and glutathione-mediated detoxification. Further identification and characterization of these proteins and pathways may build our understanding to the molecular basis of 3-MeSO2-DDE induced endocrine disruption in Leydig cells.
Resumo:
The interaction between microorganisms and host defense mechanisms is a decisive factor for the survival of marine bivalves. They rely on cell-mediated and humoral reactions to overcome the pathogens that naturally occur in the marine environment. In order to understand host defense reactions in animals inhabiting extreme environments we investigated some of the components from the immune system of the deep sea hydrothermal vent mussel Bathymodiolus azoricus. Cellular constituents in the hemolymph and extrapallial fluid were examined and led to the identification of three types of hemocytes revealing the granulocytes as the most abundant type of cell. To further characterize hemocyte types, the presence of cell surface carbohydrate epitopes was demonstrated with fluorescent WGA lectin, which was mostly ascribed to the granulocytes. Cellular reactions were then investigated by means of phagocytosis and by the activation of putative MAPKs using the microbial compounds zymosan, glucan, peptidoglycan and lipopolysaccharide. Two bacterial agents, Bacillus subtilis and Vibrio parahaemolyticus, were also used to stimulate hemocytes. The results showed that granulocytes were the main phagocytic cells in both hemolymph and extrapallial fluid of B. azoricus. Western blotting analyses using commercially available antibodies against ERK, p38 and JNK, suggested that these putative kinases are involved in signal transduction pathways during experimental stimulation of B. azoricus hemocytes. The fluorescent Ca2+ indicator Fura-2 AM was also insightful in demonstrating hemocyte stimulation in the presence of laminarin or live V. parahaemolyticus. Finally, the expression of the antibacterial gene mytilin was analyzed in gill tissues by means of RT-PCR and whole-mount in situ hybridization. Mytilin transcripts were localized in hemocytes underlying gill epithelium. Moreover, mytilin was induced by exposure of live animals to V. parahaemolyticus. These findings support the premise of a conserved innate immune system in B. azoricus. Such system is comparable to other Bivalves and involves the participation of cellular and humoral components. © 2008 Elsevier Inc. All rights reserved.
Resumo:
The calcineurin/nuclear factor of activated T-cell (NFAT) pathway represents a crucial transducer of cellular function. There is increasing evidence placing the sarcolemmal calcium pump, or plasma membrane calcium/calmodulin ATPase pump (PMCA), as a potential modulator of signal transduction pathways. We demonstrate a novel interaction between PMCA and the calcium/calmodulin-dependent phosphatase, calcineurin, in mammalian cells. The interaction domains were located to the catalytic domain of PMCA4b and the catalytic domain of the calcineurin A subunit. Endogenous calcineurin activity, assessed by measuring the transcriptional activity of its best characterized substrate, NFAT, was significantly inhibited by 60% in the presence of ectopic PMCA4b. This inhibition was notably reversed by the co-expression of the PMCA4b interaction domain, demonstrating the functional significance of this interaction. PMCA4b was, however, unable to confer its inhibitory effect in the presence of a calcium/calmodulin-independent constitutively active mutant calcineurin A suggesting a calcium/calmodulin-dependent mechanism. The modulatory function of PMCA4b is further supported by the observation that endogenous calcineurin moves from the cytoplasm to the plasma membrane when PMCA4b is overexpressed. We suggest recruitment by PMCA4b of calcineurin to a low calcium environment as a possible explanation for these findings. In summary, our results offer strong evidence for a novel functional interaction between PMCA and calcineurin, suggesting a role for PMCA as a negative modulator of calcineurin-mediated signaling pathways in mammalian cells. This study reinforces the emerging role of PMCA as a molecular organizer and regulator of signaling transduction pathways.
Resumo:
Plasma membrane calmodulin-dependent calcium ATPases (PMCAs) are enzymatic systems implicated in the extrusion of calcium from the cell. We and others have previously identified molecular interactions between the cytoplasmic COOH-terminal end of PMCA and PDZ domain-containing proteins. These interactions suggested a new role for PMCA as a modulator of signal transduction pathways. The existence of other intracellular regions in the PMCA molecule prompted us to investigate the possible participation of other domains in interactions with different partner proteins. A two-hybrid screen of a human fetal heart cDNA library, using the region 652-840 of human PMCA4b (located in the catalytic, second intracellular loop) as bait, revealed a novel interaction between PMCA4b and the tumor suppressor RASSF1, a Ras effector protein involved in H-Ras-mediated apoptosis. Immunofluorescence co-localization, immunoprecipitation, and glutathione S-transferase pull-down experiments performed in mammalian cells provided further confirmation of the physical interaction between the two proteins. The interaction domain has been narrowed down to region 74-123 of RASSF1C (144-193 in RASSF1A) and 652-748 of human PMCA4b. The functionality of this interaction was demonstrated by the inhibition of the epidermal growth factor-dependent activation of the Erk pathway when PMCA4b and RASSF1 were co-expressed. This inhibition was abolished by blocking PMCA/RASSSF1 association with an excess of a green fluorescent protein fusion protein containing the region 50-123 of RASSF1C. This work describes a novel protein-protein interaction involving a domain of PMCA other than the COOH terminus. It suggests a function for PMCA4b as an organizer of macromolecular protein complexes, where PMCA4b could recruit diverse proteins through interaction with different domains. Furthermore, the functional association with RASSF1 indicates a role for PMCA4b in the modulation of Ras-mediated signaling.
Resumo:
Background: The oral cavity is an ideal environment for colonisation by micro-organisms. A first line of defence against microbial infection is the secretion of broad spectrum host defence peptides (HDPs). In the current climate of antibiotic resistance, exploiting naturally occurring HDPs or synthetic derivatives (mimetics) to combat infection is particularly appealing. The human cathelicidin, LL-37 is one such HDP expressed ubiquitously by epithelial cells and neutrophils. LL-37 exhibits the ability to bind lipopolysaccharide (LPS) and displays broad spectrum activity against a wide range of bacteria. The current study focuses on truncation of LL-37 and defining the antimicrobial and LPS binding activity of the resultant mimetics. Objectives: To assess the antimicrobial and LPS binding activity of LL-37 and three truncated mimetics (KE-18, EF-14 and KR-12). Methods: Peptides were synthesised in-house by Fmoc solid phase peptide synthesis or obtained commercially. Antimicrobial activity was determined using a radial diffusion assay and ability to bind LPS was determined by indirect ELISA. Results: LL-37 and mimetics displayed antimicrobial activity against Streptococcus mutans and Enterococcus Faecalis. KE-18 and KR-12 were shown to possess antimicrobial activity against both pathogens whereas EF-14 was the least antimicrobial. In terms of LPS binding, KE-18 and KR-12 were both effective whereas EF-14 showed the least activity of the three mimetics. Conclusion: Truncation of LL-37 can yield peptides which retain antimicrobial activities and have the ability to bind LPS. Interestingly in some cases the truncation of LL-37 produced mimetics with greater potency than the parent molecule in terms of antimicrobial activity and LPS binding. This work was funded by DEL and the Diabetes Wellness Foundation.
Resumo:
We have collected initial evidence that tidal interaction between a late-type star and its close-in, massive planet can lead to a spin-up of the host star. We propose to explore this further by studying a small sample of proper motion pairs in which one of the stars is orbited by a Hot Jupiter. We will determine if the activity-estimated age appears to be strongly different for the two stars, which would indicate a tidal spin up of the Hot Jupiter host star. We propose to observe 4 such systems with Chandra/ACIS-S, and to perform a similar observation of one additional system with large angular separation using XMM-Newton/EPIC. The total proposed exposure times are 141 ks (Chandra) and 38 ks (XMM).
Resumo:
We have collected initial evidence that tidal interaction between a late-type star and its close-in, massive planet can lead to a spin-up of the host star. We propose to explore this further by studying a small sample of proper motion pairs in which one of the stars is orbited a Hot Jupiter. We will determine if the gyrochronal age is different for the two stars, which would indicate a tidal spin up of the planet host star. We propose to observe 3 such systems with XMM, and to perform similar Chandra observations of 3 more systems with angular separations
Resumo:
The Gram-negative bacterial lipopolysaccharide (LPS) is a major component of the outer membrane that plays a key role in host-pathogen interactions with the innate immune system. During infection, bacteria are exposed to a host environment that is typically dominated by inflammatory cells and soluble factors, including antibiotics, which provide cues about regulation of gene expression. Bacterial adaptive changes including modulation of LPS synthesis and structure are a conserved theme in infections, irrespective of the type or bacteria or the site of infection. In general, these changes result in immune system evasion, persisting inflammation, and increased antimicrobial resistance. Here, we review the modifications of LPS structure and biosynthetic pathways that occur upon adaptation of model opportunistic pathogens (Pseudomonas aeruginosa, Burkholderia cepacia complex bacteria, Helicobacter pylori and Salmonella enterica) to chronic infection in respiratory and gastrointestinal sites. We also discuss the molecular mechanisms of these variations and their role in the host-pathogen interaction.
Resumo:
Radiation resistance and toxicity in normal tissues are limiting factors in the efficacy of radiotherapy. Gold nanoparticles (GNPs) have been shown to be effective at enhancing radiation-induced cell death, and were initially proposed to physically enhance the radiation dose deposited. However, biological responses of GNP radiosensitization based on physical assumptions alone are not predictive of radiosensitisation and therefore there is a fundamental research need to determine biological mechanisms of response to GNPs alone and in combination with ionising radiation. This study aimed to identify novel mechanisms of cancer cell radiosensitisation through the use of GNPs, focusing on their ability to induce cellular oxidative stress and disrupt mitochondrial function. Using N-acetyl-cysteine, we found mitochondrial oxidation to be a key event prior to radiation for the radiosensitisation of cancer cells and suggests the overall cellular effects of GNP radiosensitisation are a result of their interaction with protein disulphide isomerase (PDI). This investigation identifies PDI and mitochondrial oxidation as novel targets for radiosensitisation.