113 resultados para hollow atom (HA)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of wireless electrochemical promotion of catalysis (EPOC) of a Pt catalyst supported on a mixed ionic electronic conducting hollow fibre membranes is investigated. This reactor configuration offers high surface areas per unit volume and is ideally suited for scaled-up applications. The MIEC membrane used is the La 0.6Sr 0.4Co 0.2Fe 0.8O 3 perovskite (LSCF) with a Pt catalyst film deposited on the outer surface of the LSCF membrane. Experimental results showed that after initial catalyst deactivation (in the absence of an oxygen chemical potential difference across the membrane) the catalytic rate can be enhanced by using an oxygen sweep and wireless EPOC can be used for the in situ regeneration of a deactivated catalyst. © 2012 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experimental study on strengthening prestressed concrete (PC) hollow-core slabs was conducted. Nine PC hollow-core slabs were tested, including three unstrengthened reference slabs and six slabs strengthened with bamboo plates. The results show that compared with unreinforced slabs, the cracking loads of PC hollow-core slabs strengthened with bamboo plates increase by 5% to 96% (with an average of 41%), the loads at allowable deflection increase by 8% to 76% (with an average of 35%), and the ultimate loads increase by 83% to 184% (with an average of 123%), respectively. All the degrees of improvement in the crack load, allowable load and ultimate load increase with the increase in the thickness and width of the bamboo plates. With the increase in the loads, the strain distribution along the height of the strengthened slabs at the mid-span basically remains a plan-assumption. With the increase in the thickness and width of the bamboo plates, both the bamboo tensile strain on the tensile face and the concrete compressive strain on the compression face of the strengthened slabs decrease under the same load level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a simple model for a component of the radiolytic production of any chemical species due to electron emission from irradiated nanoparticles (NPs) in a liquid environment, provided the expression for the G value for product formation is known and is reasonably well characterized by a linear dependence on beam energy. This model takes nanoparticle size, composition, density and a number of other readily available parameters (such as X-ray and electron attenuation data) as inputs and therefore allows for the ready determination of this contribution. Several approximations are used, thus this model provides an upper limit to the yield of chemical species due to electron emission, rather than a distinct value, and this upper limit is compared with experimental results. After the general model is developed we provide details of its application to the generation of HO(•) through irradiation of gold nanoparticles (AuNPs), a potentially important process in nanoparticle-based enhancement of radiotherapy. This model has been constructed with the intention of making it accessible to other researchers who wish to estimate chemical yields through this process, and is shown to be applicable to NPs of single elements and mixtures. The model can be applied without the need to develop additional skills (such as using a Monte Carlo toolkit), providing a fast and straightforward method of estimating chemical yields. A simple framework for determining the HO(•) yield for different NP sizes at constant NP concentration and initial photon energy is also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The scenario of "electron-capture and -loss" was recently proposed for the formation of negative ion and neutral atom beams with MeV kinetic energies. However, it does not explain why the formation of negative ions in a liquid spray is much more efficient than with an isolated atom. The role of atomic excited states in the charge-exchange processes is considered, and it is shown that it cannot account for the observed phenomena. The processes are more complex than the single electron-capture and -loss approach. It is suggested that the shell effects in the electronic structure of the projectile ion and/or target atoms may influence the capture/loss probabilities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate electron dynamics in the hydrogen atom and the hydrogen molecular ion when exposed to long wavelength laser pulses yet having intensity insufficient to ionize the system. We find that the field is still able to drive the electron, leading to time-dependent interference effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Time-dependent close-coupling (TDCC), R-matrix-with-pseudostates (RMPS), and time-independent distorted-wave (TIDW) methods are used to calculate electron-impact ionization cross sections for the carbon atom. The TDCC and RMPS results for the 1s22s22p2 ground configuration are in reasonable agreement with the available experimental measurements, while the TIDW results are 30% higher. Ionization of the 1s22s2p3 excited configuration is performed using the TDCC, RMPS, and TIDW methods. Ionization of the 1s22s22p3l (l=0–2) excited configurations is performed using the TDCC and TIDW methods. The ionization cross sections for the excited configurations are much larger than for the ground state. For example, the peak cross section for the 1s22s22p3p excited configuration is an order of magnitude larger than the peak cross section for the 1s22s22p2 ground configuration. The TDCC results are again found to be substantially lower than the TIDW results. The ionization cross-section results will permit the generation of more accurate, generalized collisional-radiative ionization coefficients needed for modeling moderately dense carbon plasmas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accurate knowledge of the electron-impact ionization of the B atom is urgently needed in current fusion plasma experiments to help design ITER wall components. Since no atomic measurements exist, nonperturba- tive time-dependent close-coupling (TDCC) calculations are carried out to accurately determine the direct ionization cross sections of the outer two subshells of B. Perturbative distorted-wave and semiempirical binary encounter calculations are found to yield cross sections from 26% lower to an order of magnitude higher than the current TDCC results. Unlike almost all neutral atoms, large excitation-autoionization contributions are found for the B atom. Nonperturbative R matrix with pseudostates (RMPS) calculations are also carried out to accurately determine the total ionization cross section of B. Previous 60 LS-term RMPS calculations are found to yield cross sections up to 40% higher than the current more extensive 476 LS-term RMPS results

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Charge changing processes of MeV ions penetrating through liquid spray is confirmed to be abundant source of various energetic negative ion and neutral atom beams its generic nature is demonstrated.