207 resultados para focal adhesion kinase


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ocular neovascularisation is a pathological hallmark of some forms of debilitating blindness including diabetic retinopathy, age related macular degeneration and retinopathy of prematurity. Current therapies for delaying unwanted ocular angiogenesis include laser surgery or molecular inhibition of the pro-angiogenic factor VEGF. However, targeting of angiogenic pathways other than, or in combination to VEGF, may lead to more effective and safer inhibitors of intraocular angiogenesis. In a small chemical screen using zebrafish, we identify LY294002 as an effective and selective inhibitor of both developmental and ectopic hyaloid angiogenesis in the eye. LY294002, a PI3 kinase inhibitor, exerts its anti-angiogenic effect in a dose-dependent manner, without perturbing existing vessels. Significantly, LY294002 delivered by intraocular injection, significantly inhibits ocular angiogenesis without systemic side-effects and without diminishing visual function. Thus, targeting of PI3 kinase pathways has the potential to effectively and safely treat neovascularisation in eye disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DNA-dependent protein kinase (DNA-PK) has been implicated in a variety of nuclear processes including DNA double strand break repair, V(D)J recombination, and transcription. A recent study showed that DNA-PK is responsible for Ser-473 phosphorylation in the hydrophobic motif of protein kinase B (PKB/Akt) in genotoxic-stressed cells, suggesting a novel role for DNA-PK in cell signaling. Here, we report that DNA-PK activity toward PKB peptides is impaired in DNA-PK knock-out mouse embryonic fibroblast cells when compared with wild type. In addition, human glioblastoma cells expressing a mutant form of DNA-PK (M059J) displayed a lower DNA-PK activity when compared with glioblastoma cells expressing wild-type DNA- PK (M059K) when PKB peptide substrates were tested. DNA- PK preferentially phosphorylated PKB on Ser-473 when compared with its known in vitro substrate, p53. A consensus hydrophobic amino acid surrounding the Ser-473 phospho-acceptor site in PKB containing amino acids Phe at position +1 and +4 and Tyr at position -1 are critical for DNA- PK activity. Thus, these data define the specificity of DNA- PK action as a Ser-473 kinase for PKB in DNA repair signaling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phosphoinositide 3-kinases produce 3'-phosphorylated phosphoinositides that act as second messengers to recruit other signalling proteins to the membrane(1). Pi3ks are activated by many extracellular stimuli and have been implicated in a variety of cellular responses(1). The Pi3k gene family is complex and the physiological roles of different classes and isoforms are not clear. The gene Pik3r1 encodes three proteins (p85 alpha, p55 alpha and p50 alpha) that serve as regulatory subunits of class I-A Pi3ks (ref. 2). Mice lacking only the p85a isoform are viable but display hypoglycaemia and increased insulin sensitivity correlating with upregulation of the p55 alpha and p50 alpha variants(3). Here we report that loss of all protein products of Pik3r1 results in perinatal lethality. We observed, among other abnormalities, extensive hepatocyte necrosis and chylous ascites, We also noted enlarged skeletal muscle fibres, brown fat necrosis and calcification of cardiac tissue. In liver and muscle, loss of the major regulatory isoform caused a great decrease in expression and activity of class I-A Pi3k catalytic subunits: nevertheless, homozygous mice still displayed hypoglycaemia, lower insulin levels and increased glucose tolerance. Our findings reveal that p55 alpha and/or p50 alpha are required for survival, but not for development of hypoglycaemia, in mice lacking p85 alpha.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: GSK461364 is an ATP-competitive inhibitor of polo-like kinase 1 (Plk1). A phase I study of two schedules of intravenous GSK461364 was conducted. Experimental Design: GSK461364 was administered in escalating doses to patients with solid malignancies by two schedules, either on days 1, 8, and 15 of 28-day cycles (schedule A) or on days 1, 2, 8, 9, 15, and 16 of 28-day cycles (schedule B). Assessments included pharmacokinetic and pharmacodynamic profiles, as well as marker expression studies in pretreatment tumor biopsies. Results: Forty patients received GSK461364: 23 patients in schedule A and 17 in schedule B. Dose-limiting toxicities (DLT) in schedule A at 300 mg (2 of 7 patients) and 225 mg (1 of 8 patients) cohorts included grade 4 neutropenia and/or grade 3–4 thrombocytopenia. In schedule B, DLTs of grade 4 pulmonary emboli and grade 4 neutropenia occurred at 7 or more days at 100 mg dose level. Venous thrombotic emboli (VTE) and myelosuppression were the most common grade 3–4, drug-related events. Pharmacokinetic data indicated that AUC (area under the curve) and C max (maximum concentration) were proportional across doses, with a half-life of 9 to 13 hours. Pharmacodynamic studies in circulating tumor cells revealed an increase in phosphorylated histone H3 (pHH3) following drug administration. A best response of prolonged stable disease of more than 16 weeks occurred in 6 (15%) patients, including 4 esophageal cancer patients. Those with prolonged stable disease had greater expression of Ki-67, pHH3, and Plk1 in archived tumor biopsies. Conclusions: The final recommended phase II dose for GSK461364 was 225 mg administered intravenously in schedule A. Because of the high incidence (20%) of VTE, for further clinical evaluation, GSK461364 should involve coadministration of prophylactic anticoagulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The differential diagnosis of soft tissue tumours poses a considerable challenge for pathologists, especially adipocytic tumours, as these may show considerable overlap in clinical presentation and morphological features with many other mesenchymal neoplasms. Hence, a specific and reliable marker that identifies adipocytic differentiation is much sought. We investigated the immunohistochemical expression of PIM-1 kinase in 35 samples of soft tissue tumours using tissue microarray technology and 49 full sections of adipocytic (n = 26) and non-adipocytic tumours (n = 23). Benign and malignant adipocytic tumours showed strong expression of PIM-1 while the non-adipocytic tumours were either negative or showed only weak staining for the protein. In myxoid liposarcomas, PIM-1 showed a distinct, unique vacuolar staining pattern, clearly outlining fine cytoplasmic lipid vacuoles. By contrast, non-adipocytic myxoid tumours (myxoma, chordoma and myxoid chondrosarcoma) did not show this vacuolar pattern of PIM-1 staining, although vacuolated cells were present on H&E. This differential expression was confirmed at a gene expression level in selected cases. Our results indicate that the expression of PIM-1 in adipose tissue may be a useful marker of adipocytic differentiation, in particular if the staining is both of high intensity and present in a unique, vacuolar pattern.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In vitro experiments have shown the PIM1 kinase to have diverse biological roles in cell survival, proliferation and differentiation. In humans, PIM1 is often expressed in both normal and transformed cells. The PIM1 kinase is a true oncogene implicated in early transformation and tumour progression in haematopoietic malignancies and prostate carcinomas. it is associated with aggressive subgroups of lymphoma, is a marker of poor prognosis in prostate carcinomas and has been suggested to have a role in hormone insensitivity of prostate malignancies. PIM1 has a possible role in other carcinomas with 6p21 genomic alterations. On one hand, PIM1 (due to its role in malignancy) appears to be a promising target for drug development programmes but, on the other hand, the complexity of its molecular structure has posed challenges in the development of PIM1 inhibitors. In this review we discuss PIM1 expression in human tissues (including some new data from our laboratory), its role in human malignancies, as well as the possibilities and challenges in the development of target therapy for PIM1. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fibrillar collagens provide the most fundamental platform in the vertebrate organism for the attachment of cells and matrix molecules. we have identified specific sites in collagens to which cells can attach, either directly or through protein intermediaries. Using Toolkits of triple-helical peptides, each peptide comprising 27 residues of collagen primary sequence and overlapping with its neighbours by nine amino acids, we have mapped the binding of receptors and other proteins on to collagens II or III. Integrin alpha 2 beta 1 binds to several GXX'GER motifs within the collagens, the affinities of which differ sufficiently to control cell adhesion and migration independently of the cellular regulation of the integrin. The platelet receptor, Gp (glycoprotein) VI binds well to GPO (where 0 is hydroxyproline)-containing model peptides, but to very few Toolkit peptides, suggesting that sequence in addition to GPO triplets is important in defining GpVI binding. The Toolkits have been applied to the plasma protein vWF (von Willebrand factor), which binds to only a single sequence, identified by truncation and amino acid substitution within Toolkit peptides, as GXRGQOGVMGFO in collagens II and III. Intriguingly, the receptor tyrosine kinase, DDR2 (discoidin domain receptor 2) recognizes three sites in collagen II, including its vWF-binding site, although the amino acids that support the interaction differ slightly within this motif. Furthermore, the secreted protein BM-40 (basement membrane protein 40) also binds well to this same region. Thus the availability of extracellular collagen-binding proteins may be important in regulating and facilitating direct collagen-receptor interaction.