176 resultados para eye tracking
Resumo:
Colour-based particle filters have been used exhaustively in the literature given rise to multiple applications However tracking coloured objects through time has an important drawback since the way in which the camera perceives the colour of the object can change Simple updates are often used to address this problem which imply a risk of distorting the model and losing the target In this paper a joint image characteristic-space tracking is proposed which updates the model simultaneously to the object location In order to avoid the curse of dimensionality a Rao-Blackwellised particle filter has been used Using this technique the hypotheses are evaluated depending on the difference between the model and the current target appearance during the updating stage Convincing results have been obtained in sequences under both sudden and gradual illumination condition changes Crown Copyright (C) 2010 Published by Elsevier B V All rights reserved
Resumo:
We propose a complete application capable of tracking multiple objects in an environment monitored by multiple cameras. The system has been specially developed to be applied to sport games, and it has been evaluated in a real association-football stadium. Each target is tracked using a local importance-sampling particle filter in each camera, but the final estimation is made by combining information from the other cameras using a modified unscented Kalman filter algorithm. Multicamera integration enables us to compensate for bad measurements or occlusions in some cameras thanks to the other views it offers. The final algorithm results in a more accurate system with a lower failure rate. (C) 2009 Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.3114605]
Resumo:
In this paper, we introduce an efficient method for particle selection in tracking objects in complex scenes. Firstly, we improve the proposal distribution function of the tracking algorithm, including current observation, reducing the cost of evaluating particles with a very low likelihood. In addition, we use a partitioned sampling approach to decompose the dynamic state in several stages. It enables to deal with high-dimensional states without an excessive computational cost. To represent the color distribution, the appearance of the tracked object is modelled by sampled pixels. Based on this representation, the probability of any observation is estimated using non-parametric techniques in color space. As a result, we obtain a Probability color Density Image (PDI) where each pixel points its membership to the target color model. In this way, the evaluation of all particles is accelerated by computing the likelihood p(z|x) using the Integral Image of the PDI.
Resumo:
In human motion analysis, the joint estimation of appearance, body pose and location parameters is not always tractable due to its huge computational cost. In this paper, we propose a Rao-Blackwellized Particle Filter for addressing the problem of human pose estimation and tracking. The advantage of the proposed approach is that Rao-Blackwellization allows the state variables to be splitted into two sets, being one of them analytically calculated from the posterior probability of the remaining ones. This procedure reduces the dimensionality of the Particle Filter, thus requiring fewer particles to achieve a similar tracking performance. In this manner, location and size over the image are obtained stochastically using colour and motion clues, whereas body pose is solved analytically applying learned human Point Distribution Models.
Resumo:
We present a Spatio-temporal 2D Models Framework (STMF) for 2D-Pose tracking. Space and time are discretized and a mixture of probabilistic "local models" is learnt associating 2D Shapes and 2D Stick Figures. Those spatio-temporal models generalize well for a particular viewpoint and state of the tracked action but some spatio-temporal discontinuities can appear along a sequence, as a direct consequence of the discretization. To overcome the problem, we propose to apply a Rao-Blackwellized Particle Filter (RBPF) in the 2D-Pose eigenspace, thus interpolating unseen data between view-based clusters. The fitness to the images of the predicted 2D-Poses is evaluated combining our STMF with spatio-temporal constraints. A robust, fast and smooth human motion tracker is obtained by tracking only the few most important dimensions of the state space and by refining deterministically with our STMF.
Resumo:
In this paper, a novel framework for visual tracking of human body parts is introduced. The approach presented demonstrates the feasibility of recovering human poses with data from a single uncalibrated camera by using a limb-tracking system based on a 2-D articulated model and a double-tracking strategy. Its key contribution is that the 2-D model is only constrained by biomechanical knowledge about human bipedal motion, instead of relying on constraints that are linked to a specific activity or camera view. These characteristics make our approach suitable for real visual surveillance applications. Experiments on a set of indoor and outdoor sequences demonstrate the effectiveness of our method on tracking human lower body parts. Moreover, a detail comparison with current tracking methods is presented.
Resumo:
In this paper we propose a statistical model for detection and tracking of human silhouette and the corresponding 3D skeletal structure in gait sequences. We follow a point distribution model (PDM) approach using a Principal Component Analysis (PCA). The problem of non-lineal PCA is partially resolved by applying a different PDM depending of pose estimation; frontal, lateral and diagonal, estimated by Fisher's linear discriminant. Additionally, the fitting is carried out by selecting the closest allowable shape from the training set by means of a nearest neighbor classifier. To improve the performance of the model we develop a human gait analysis to take into account temporal dynamic to track the human body. The incorporation of temporal constraints on the model increase reliability and robustness.