371 resultados para cystic nephroma
Resumo:
Background - Normal subjects have a negative nasal transmucosal potential difference (TPD) at rest which becomes more negative with exercise. Patients with cystic fibrosis have a more negative resting nasal TPD than controls. The present study was designed to determine the effects of exercise on the TPD of patients with cystic fibrosis.
Resumo:
Cystic fibrosis (CF) is the most common inherited lethal disease in Caucasians which results in multiorgan dysfunction. However, 85% of the deaths are due to pulmonary infections. Infection by Burkholderia cenocepacia (B. cepacia) is a particularly lethal threat to CF patients because it causes severe and persistent lung inflammation and is resistant to nearly all available antibiotics. In CFTR Delta F508 (Delta F508) mouse macrophages, B. cepacia persists in vacuoles that do not fuse with the lysosomes and mediates increased production of IL-1 beta. It is believed that intracellular bacterial survival contributes to the persistence of the bacterium. Here we show for the first time that in wild-type but not in Delta F508 macrophages, many B. cepacia reside in autophagosomes that fuse with lysosomes at later stages of infection. Accordingly, association and intracellular survival of B. cepacia are higher in CFTR-Delta F508 macrophages than in WT macrophages. An autophagosome is a compartment that engulfs nonfunctional organelles and parts of the cytoplasm then delivers them to the lysosome for degradation to produce nutrients during periods of starvation or stress. Furthermore, we show that B. cepacia downregulates autophagy genes in WT and Delta F508 macrophages. However, autophagy dysfunction is more pronounced in Delta F508 macrophages since they already have compromised autophagy activity. We demonstrate that the autophagy-stimulating agent, rapamycin markedly decreases B. cepacia infection in vitro by enhancing the clearance of B. cepacia via induced autophagy. In vivo, rapamycin decreases bacterial burden in the lungs of CF mice and drastically reduces signs of lung inflammation. Together, our studies reveal that if efficiently activated, autophagy can control B. cepacia infection and ameliorate the associated inflammation. Therefore, autophagy is a novel target for new drug development for CF patients to control B. cepacia infection and accompanying inflammation.
Resumo:
The cystic fibrosis transmembrane conductance regulator (CFTR) has been proposed as an epithelial cell receptor for the entry of Salmonella Typhi but not Salmonella Typhimurium. The bacterial ligand recognized by CM is thought to reside either in the S. Typhi lipopolysaccharide core region or in the type IV pili. Here, we assessed the ability of virulent strains of S. Typhi and S. Typhimurium to adhere to and invade BHK epithelial cells expressing either the wild-type CFTR protein or the Delta F508 CFTR mutant. Both S. Typhi and S. Typhimurium invaded the epithelial cells in a CFTR-independent fashion. Furthermore and also in a CFTR-independent manner, a S. Typhi pilS mutant adhered normally to BHK cells but displayed a 50% reduction in invasion as compared to wild-type bacteria. Immunofluorescence microscopy revealed that bacteria and CFTR do not colocalize at the epithelial cell surface. Together, our results strongly argue against the established dogma that CFTR is a receptor for entry of Salmonella to epithelial cells. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The Burkholderia cepacia complex (Bcc) is a group of opportunistic bacteria chronically infecting the airways of patients with cystic fibrosis (CF). Several laboratories have shown that Bcc members, in particular B. cenocepacia, survive within a membrane-bound vacuole inside phagocytic and epithelial cells. We have previously demonstrated that intracellular B. cenocepacia causes a delay in phagosomal maturation, as revealed by impaired acidification and slow accumulation of the late phagolysosomal marker LAMP-1. In this study, we demonstrate that uninfected cystic fibrosis transmembrane conductance regulator (CFTR)-defective macrophages or normal macrophages treated with a CFTR-specific drug inhibitor display normal acidification. However, after ingestion of B. cenocepacia, acidification and phagolysosomal fusion of the bacteria-containing vacuoles occur in a lower percentage of CFTR-negative macrophages than CFTR-positive cells, suggesting that loss of CFTR function contributes to enhance bacterial intracellular survival. The CFTR-associated phagosomal maturation defect was absent in macrophages exposed to heat-inactivated B. cenocepacia and macrophages infected with a non-CF pathogen such as Salmonella enterica, an intracellular pathogen that once internalized rapidly traffics to acidic compartments that acquire lysosomal markers. These results suggest that not only a defective CFTR but also viable B. cenocepacia are required for the altered trafficking phenotype. We conclude that CFTR may play a role in the mechanism of clearance of the intracellular infection, as we have shown before that B. cenocepacia cells localized to the lysosome lose cell envelope integrity. Therefore, the prolonged maturation arrest of the vacuoles containing B. cenocepacia within cftr(-/-) macrophages could be a contributing factor in the persistence of the bacteria within CF patients.
Resumo:
Burkholderia cenocepacia is an opportunistic bacterium that infects patients with cystic fibrosis. B. cenocepacia strains J2315, K56-2, C5424, and BC7 belong to the ET12 epidemic clone, which is transmissible among patients. We have previously shown that transposon mutants with insertions within the O antigen cluster of strain K56-2 are attenuated for survival in a rat model of lung infection. From the genomic DNA sequence of the O antigen-deficient strain J2315, we have identified an O antigen lipopolysaccharide (LPS) biosynthesis gene cluster that has an IS402 interrupting a predicted glycosyltransferase gene. A comparison with the other clonal isolates revealed that only strain K56-2, which produced O antigen and displayed serum resistance, lacked the insertion element inserted within the putative glycosyltransferase gene. We cloned the uninterrupted gene and additional flanking sequences from K56-2 and conjugated this plasmid into strains J2315, C5424, and BC7. All the exconjugants recovered the ability to form LPS O antigen. We also determined that the structure of the strain K56-2 O antigen repeat, which was absent from the LPS of strain J2315, consisted of a trisaccharide unit made of rhamnose and two N-acetylgalactosamine residues. The complexity of the gene organization of the K56-2 O antigen cluster was also investigated by reverse transcription-PCR, revealing several transcriptional units, one of which also contains genes involved in lipid A-core oligosaccharide biosynthesis.
Resumo:
Although cystic fibrosis pulmonary infection is polymicrobial, routine laboratory methods focus on the detection of a small number of known pathogens. Recently, the use of strict anaerobic culture techniques and molecular technologies have identified other potential pathogens including anaerobic bacteria. Determining the role of all bacteria in a complex bacterial community and how they interact is extremely important; individual bacteria may affect how the community develops, possess virulence factors, produce quorum-sensing signals, stimulate an immune response or transfer antibiotic resistance genes, which could all contribute to disease progression. There are many challenges to managing cystic fibrosis lung infection but as knowledge about the airway microbiome continues to increase, this may lead to advances in the therapeutic management of the disease. © 2011 Future Medicine Ltd.
Resumo:
The aim of this study was to assess the reliability and feasibility of cycle ergometer tests in young children with cystic fibrosis (CF). Children with CF aged 6-11 years and with stable lung disease performed two cycle ergometry tests (intermittent sprint and continuous incremental) on two occasions 1 week apart. Reliability was assessed using repeated-measures ANOVA. Bias was considered to be significant at P?
Resumo:
The aim of our study was to discover the health status and healthcare utilisation associated with pulmonary exacerbations in cystic fibrosis (CF) and chronic Pseudomonas aeruginosa infection.
Patients with CF from five UK CF centres attended two visits, 8–12 weeks apart. They were classified at visit 1 as being in one of the three health states: no current pulmonary exacerbation; “mild” (no hospitalisation) pulmonary exacerbation; and “severe” (hospitalisation) pulmonary exacerbation. All patients completed the Cystic Fibrosis Questionnaire-Revised (CFQ-R) and EuroQol (EQ-5D) and a clinical form, and forced expiratory volume in 1 s (FEV1) was measured at visits 1 and 2. Annual healthcare utilisation data were collected.
94 patients of mean±sd age 28.5±8.2 yrs and FEV1 58.7±26.8% were recruited. 60 patients had no pulmonary exacerbation, 15 had a mild and 19 had a severe pulmonary exacerbation at visit 1. EQ-5D and CFQ-R data showed that the worse the exacerbation, the poorer the health-related quality of life (HRQoL). There were strong relationships between the CFQ-R and EQ-5D domain scores. The mean rate of pulmonary exacerbations per patient per year was 3.6 (1.5 in hospital and 2.2 at home). The mean length of stay per hospital pulmonary exacerbation was 9 days.
As exacerbation status worsens, patients experience worse HRQoL. There is a significant healthcare burden associated with treatment of pulmonary exacerbation and long-term prophylaxis.