190 resultados para butyl radicals
Resumo:
The interfacial tension of the liquid-liquid phase boundary of several 1,3-dialkyl imidazolium based ionic liquids, namely, 1,3-dimethylimidazolium bis{(trifluoromethyl)sulfonyl}imide [C(1)mim][NTf2], 1-ethyl-3-methylimidazoliurn bis{(trifluoromethyl)sulfonyl}imide [C(2)mim][NTf2], 1-butyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}imide [C(4)mim][NTf2], 1-hexyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}imide [C(6)mim][NTf2], 1-octyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}imide [C(8)mim][NTf2], 1-butyl-3-methylimidazolium trifluoromethylsulfonate [C(4)mim][CF3SO3], and 1-butyl-3-methylimidazolium trifluoroacetate [C(4)mim][CF3COO] with water and with the n-alkanes, n-hexane, n-octane and n-decane, has been measured using the pendant drop method as a function of temperature from 293 to 323 K. The experimental interfacial tension data were correlated using the ionic liquid parachor estimation method and a mutual solubility model. The influence of the cation and anion of ionic liquids and also of alkyl chain length of n-alkanes on interfacial tension is discussed. It has also been demonstrated that the interfacial tension data estimated by the correlation methods are in good agreement with the experimental data. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The electrochemistry of nicotinamide adenine dinucleotide (NADH) in its reduced form was examined in two room-temperature ionic liquids (RTILs): 1-ethyl-3-methylimidazolium bis-(trifluoromethylsulfonyl)imide ([C(2)mim][NTf2]) and 1-butyl-3-methylimidazolium hexafluorophos-phate ([C(4)mim][PF6]). NADH oxidation has previously been studied in aqueous solution where it follows the pathway: one-electron oxidation to the NADH(center dot+) radical cation, deprotonation to produce the neutral NAD(center dot) radical, then oxidation to the NAD(+) cation. The electrochemistry of NADH was examined in [C(2)mim][NTf2] and [C(4)mim][PF6] at the bare Pt electrode (10 mu m diameter): In [C(2)mim][NTf2], no oxidation was observed; in [C(4)mim][PF6], an oxidative signal was observed, which likely followed the pathway described above, where upon formation of the NADH(center dot+) radical cation, the [PF6](-) anion (unlike the [NTf2](-) anion) reacts with the proton to form HPF6, which decomposes. This demonstrates the tunability of RTILs, whereby the choice of one anion in an RTIL over another can promote a reaction. Poly(vinylferrocene) (PVF) was studied as a mediator for the NADH detection in both RTILs to attempt to lower the potential of NADH detection. The Pt electrode was modified with PVF, and the oxidation of PVF to PVF+ was observed in [C(2)mim][NTf2] and [C(4)mim][PF6], but no mediation of the NADH oxidation was observed.
Resumo:
The reduction of guanine was studied by microelectrode voltammetry in the room temperature ionic liquids (RTILs) N-hexyltriethylammonium his (trifluoromethanesulfonyl) imide [N-6.2.2.2][N(Tf)(2)], 1-butyl-3-methylimidazolium hexafluorosphosphate [C(4)mim] [PF6], N-butyl-N-methyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide [C(4)mpyrr][N(Tf)(2)], 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide [C-4mim][N(TF)(2)], N-butyl-N-methyl-pyrrolidinium dicyanamide [C(4)mpyrr][N(NC)(2)] and tris(P-hexyl)-tetradecylphosphonium trifluorotris(pentafluoroethyl)phosphate [P-14,P-6,(6,6)][FAP] on a platinum microelectrode. In [N-6,N-2,N-2,N-2][NTf2] and [P-14,P-6,P-6.6][FAP], but not in the other ionic liquids studied, guanine reduction involves a one-electron, diffusion-controlled process at very negative potential to produce an unstable radical anion. which is thought to undergo a dimerization reaction, probably after proton abstraction from the cation of the ionic liquid. The rate of this subsequent reaction depends on the nature of the ionic liquid, and it is faster in the ionic liquid [P-14,P-6,P-6.6[FAP], in which the formation of the resulting dimer can be voltammetrically monitored at less negative potentials than required for the reduction of the parent molecule. Adenine showed similar behaviour to guanine but the pyrimidines thymine and cytosine did not; thymine was not reduced at potentials less negative than required for solvent (RTIL) decomposition while only a poorly defined wave was seen for cytosine. The possibility for proton abstraction from the cation in [N-6,N-2,N-2,N-2],[NTF2] and [P-14,P-6,P-6.6][FAP] is noted and this is thought to aid the electrochemical dimerization process. The resulting rapid reaction is thought to shift the reduction potentials for guanine and adenine to lower values than observed in RTILs where the scope for proton abstraction is not present. Such shifts are characteristic of so-called EC processes where reversible electron transfer is followed by a chemical reaction. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Zinc oxide nanoparticles have been synthesized by microwave decomposition of zinc acetate precursor using an ionic liquid, 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide, [bmim][NTf2] as a green solvent. The structure and morphology of ZnO nanoparticles have been characterized using X-ray diffraction and transmission electron microscopy. The ZnO nanofluids have been prepared by dispersing ZnO nanoparticles in glycerol as a base fluid in the presence of ammonium citrate as a dispersant. The antibacterial activity of suspensions of ZnO nanofluids against (E. coli) has been evaluated by estimating the reduction ratio of the bacteria treated with ZnO. Survival ratio of bacteria decreases with increasing the concentrations of ZnO nanofluids and time. The results show that an increase in the concentrations of ZnO nanofluids produces strong antibacterial activity toward E. coli. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Antioxidant species may act in vivo to decrease oxidative damage to DNA, protein and lipids thus reducing the risk of coronary heart disease and cancer. Phytoestrogens are plant compounds which are a major component of traditional Asian diets and which may be protective against certain hormone-dependent cancers (breast and prostate) and against coronary heart disease. They may also be able to function as antioxidants, scavenging potentially harmful free radicals. In this study, the effects of the isoflavonoids (a class of phytoestrogen) genistein and equol on hydrogen peroxide-mediated DNA damage in human lymphocytes were determined using alkaline single-cell gel electrophoresis (the comet assay). Treatment with hydrogen peroxide significantly increased the levels of DNA strand breaks. Pre-treatment of the cells with both genistein and equol offered protection against this damage at concentrations within the physiological range. This protection was greater than that offered by addition of the known antioxidant vitamins ascorbic acid and alpha -tocopherol, or the compounds 17 beta -oestradiol and Tamoxifen which have similar structures to isoflavonoids and are known to have weak antioxidant properties. These findings are consistent with the hypothesis that phytoestrogens can, under certain conditions, function as antioxidants and protect against oxidatively-induced DNA damage. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Free radical production occurs continuously in all cells as part of normal cellular function. However, excess free radical production originating from endogenous or exogenous sources might play a role in many diseases. Antioxidants prevent free radical induced tissue damage by preventing the formation of radicals, scavenging them, or by promoting their decomposition. This article reviews the basic chemistry of free radical formation in the body, the consequences of free radical induced tissue damage, and the function of antioxidant defence systems, with particular reference to the development of atherosclerosis.
Resumo:
The feasibility of laser cooling AlH and AlF is investigated using ab initio quantum chemistry. All the electronic states corresponding to the ground and lowest two excited states of the Al atom are calculated using multi-reference configuration interaction (MRCI) and the large AV6Z basis set for AlH. The smaller AVQZ basis set is used to calculate the valence electronic states of AlF. Theoretical Franck-Condon factors are determined for the A(1)Pi -> X(1)Sigma(+) transitions in both radicals and found to agree with the highly diagonal factors found experimentally, suggesting computational chemistry is an effective method for screening suitable laser cooling candidates. AlH does not appear to have a transition quite as diagonal as that in SrF (which has been laser cooled) but the A(1)Pi -> X(1)Sigma(+) transition transition of AlF is a strong candidate for cooling with just a single laser, though the cooling frequency is deep in the UV. Furthermore, the a (3)Pi -> X(1)Sigma(+) transitions are also strongly diagonal and in AlF is a practical method for obtaining very low final temperatures around 3 mu K.
Resumo:
One of the reasons for the 'fin de seicle' angst within western liberal capitalist societies is the rise in prominance of ecological concerns within these societies. Long before the New Right declared the post-war welfare state to be untenable, early green critics had claimed it to be ecologically unsustainable. The addiction of the welfare state on ever increasing levels of economic growth was pronounced to be simply impossible within the context of a finite planet. Although it was not expressed in this manner, what these early ecological concerns with Limits to Growth were in effect saying was that the accumulation of capital rendered capitalism unsustainable. Yet the ecological critique of capitalism has not found much favour within the Marxist critique untile recently. Early Marxist analyses of the ecology movement dismissed them as ‘petty bourgeios radicals’ while many greens still view Marxism as ‘fair shares in extinction’. The lack of positive engagement and dialogue between Marxism and ecology has in recent years been put right with a discernable overlap between the two critiques of capitalism. This article seeks to present the areas of disagreement and agreement between the two and seeks to provide an ‘environmental audit’ on both the Marxist method and political project.
Resumo:
A new class of platinum-bipyridyl compounds has been synthesized by the dehydrohalogenative reaction of [4,4'-bis(tert-butyl)-2,2'-bipyridyl]platinum dichloride [PtCl2((t)Bu(2)bipy)] 1 with terminal alkynes HC=CR, in the presence of copper(I) iodide and diisopropylamine. The products [Pt(C=CR)(2)((t)Bu(2)bipy)] (R=C6H4NO2-p 2, C6H5 3, C6H4CH3-p 4 or SiMe3 5), have been characterised by spectroscopic and analytical methods, and a single crystal molecular structure determination has been carried out on 4. Extended Huckel molecular orbital calculations have also been carried out, and the results are used to help rationalise the voltammetric, EPR and spectroelectrochemical properties of the new compounds. These show that compounds 3, 4 and 5 undergo a one-electron bipyridyl based redox process, but that 2 has an unresolved two-electron process located on the nitro groups.
Resumo:
The use of ionic liquid (IL) electrolytes promises to improve the energy density of electrochemical capacitors (ECs) by allowing for operation at higher voltages. Several studies have also shown that the pore size distribution of materials used to produce electrodes is an important factor in determining EC performance. In this research the capacitative, energy and power performance of ILs 1-ethyl-3- methylimidazolium tetrafluoroborate (EMImBF4), 1-ethyl-3-methylimidazolium dicyanamide (EMImN(CN)2), 1,2-dimethyl-3-propylimidazolium bis(trifluoromethylsulfonyl)imide (DMPImTFSI), and 1-butyl-3-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate (BMPyT(F5Et)PF3) were studied and compared with the commercially utilised organic electrolyte 1M tetraethylammonium tetrafluoroborate solution in anhydrous propylene carbonate (Et4NBF4–PC 1 M). To assess the effect of pore size on IL performance, controlled porosity carbons were produced from phenolic resins activated in CO2. The carbon samples were characterised by nitrogen adsorption– desorption at 77 K and the relevant electrochemical behaviour was characterised by cyclic voltammetry, galvanostatic charge–discharge and electrochemical impedance spectroscopy. The best capacitance performance was obtained for the activated carbon xerogel with average pore diameter 3.5 nm, whereas the optimum rate performance was obtained for the activated carbon xerogel with average pore diameter 6 nm. When combined in an EC with IL electrolyte EMImBF4 a specific capacitance of 210 F g1 was obtained for activated carbon sample with average pore diameter 3.5 nm at an operating voltage of 3 V. The activated carbon sample with average pore diameter 6 nm allowed for maximum capacitance retention of approximately 70% at 64 mA cm2.
Resumo:
A series of four calix[5]arenes and three calix[6]arenes (R-calixarene-OCH2COR1) (R = H or Bu-t) with alkyl ketone residues (R-1 = Me or Bu-t) on the lower rim have been synthesized, and their affinity for complexation of alkali cations has been assessed through phase-transfer experiments and stability constant measurements. The conformations of these ketones have been probed by H-1 NMR and X-ray diffraction analysis, and by molecular mechanics calculations. Pentamer 3 (R R-1 = Bu-t) possesses a symmetrical cone conformation in solution and a very distorted cone conformation in the solid state. Pentamer 5 (R = H, R-1 = Bu-t) exists in a distorted 1,2-alternate conformation in the solid state, but in solution two slowly interconverting conformations, one a cone and the other presumed to be 1,2-alternate, can be detected. X-ray structure analysis of the sodium and rubidium perchlorate complexes of 3 reveal the cations deeply encapsulated by the ethereal and carbonyl oxygen atoms in distorted cone conformations which can be accurately reproduced by molecular mechanics calculations. The phase-transfer and stability constant data reveal that the extent of complexation depends on calixarene size and the nature of the alkyl residues adjacent to the ketonic carbonyls with tert-butyl much more efficacious than methyl.
Resumo:
The oxidation of six charged iron(III) tetraarylporphyrins with chemical oxidants has been investigated. In aqueous solution each can be converted by tert-butyl hydroperoxide or monopersulphate into its corresponding oxoiron(IV) porphyrin, whereas in methanol only the iron(III) tetra(N-methylpyridyl)porphyrins form detectable ferryl porphyrins at ambient temperatures. On standing, the iron species revert to the parent porphyrin with a small loss due to non-reversible oxidative destruction. That the oxidised porphyrin intermediates are oxoiron(IV) species has been determined using UV-VIS, resonance Raman, H1 NMR and EPR spectroscopy.
Resumo:
A new chemical model of the circumstellar envelope surrounding the carbon-rich star IRC+10216 has been developed. This model incorporates a variety of newly measured rapid neutral-neutral reactions between carbon atoms and hydrocarbons and between the radical CN and a variety of stable neutral molecules. In addition, other neutral-neutral reactions in the above two classes or involving atoms such as N or radicals such as C(2n)H have been included with large rate coefficients although they have not yet been studied in the laboratory. Unlike the interstellar case, where the inclusion of these neutral-neutral reactions destroys molecular complexity, our model results for IRC+10216 show that sufficient abundances of large hydrocarbon radicals and cyanpolyynes can be produced to explain observations. We also discuss the formation of H2CN and NH2CN, two potentially observable molecules in IRC+10216.
Resumo:
We test the hypothesis that methane is the source of the carbon observed in carbon-bearing molecules around oxygen-rich stars, by considering the synthesis of formaldehyde which is formed in the reaction between oxygen atoms and methyl radicals. We find that, provided that the parent methane abundance is large enough, millimetre-wave emission lines of H2CO should be detectable in such stars. We also consider the formation of other species, notably H2CN and H2CS, from methyl radicals, but conclude that they will be at least one order of magnitude less abundant than H2CO and therefore not detectable with current instrumentation.
Resumo:
Two stable nanofluids comprising of mixed valent copper(I,II) oxide clusters (<1 nm) suspended in 1-butyl-3-methylimidazolium acetate, [C(4)mim][OAc], and copper(II) oxide nanoparticles (<50 nm) suspended in trioctyl(dodecyl) phosphonium acetate, [P-88812][OAc], were synthesised in a facile one-pot reaction from solutions of copper(II) acetate hydrate in the corresponding ionic liquids. Formation of the nanostructures was studied using 13C NMR spectroscopy and differential scanning calorimetry (DSC). From a solution of Cu(OAc)2 in 1-ethyl-3-methylimidazolium acetate, [C2mim][OAc], crystals were obtained that revealed the structure of [C2mim][Cu3(OAc)5(OH)2(H2O)]center dot H2O, indicating the formation of copper hydroxo-clusters in the course of the reaction. Synthesised nanostructures were studied using transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). Physical properties of the prepared IL-nanofluids were examined using IR and UV-VIS spectroscopy, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and densitometry.