257 resultados para blood vessel
Resumo:
Marie Curie Cancer Care (MCCC) is a national charitable organisation which provides specialist palliative care services to patients with cancer and other life limiting illnesses. Marie Curie Nursing Service (MCNS) provides nursing services to patients in their own homes. The administration of blood transfusions to palliative care patients is required to improve symptom management and quality of life; however this procedure often results in unnecessary hospital admissions. Recognising that the majority of patients wish to be cared for and die in their own home, and with National Guidance recommending that specialist palliative care services should be provided to patients in their preferred place of care, a recent service initiative by MCNS was domiciliary blood transfusions. Whilst this is not a new service within domiciliary care, this pilot project aimed to capture patient views to evaluate this service initiative. Telephone interviews were conducted, using a questionnaire, with 11 patients who had received the service. Findings indicated positive evaluation of the service. Domiciliary blood transfusions helped to avoid unnecessary hospital admissions, the quality of life of patients and their families was improved in the palliative phase of illness and they received the service in their preferred place of care.
Resumo:
A novel technique for the separation of monocytes from human peripheral blood preparations has been developed. The technique is based on the use of expanded-bed adsorption and a solid perfluorocarbon derivatized with avidin or streptavidin for the indirect positive or negative capture of cells labeled with biotinylated monoclonal antibodies. The perfluorocarbon support was prepared and characterized and the contactor design and operating conditions, that enable cells to be selectively isolated, were investigated. Experiments consisted of applying an immunolabeled pulse of 1 x 10(8) peripheral blood mononuclear cells (PBMCs), isolated by density gradient centrifugation, directly onto a refrigerated expanded bed. The major cell types remaining were T-lymphocytes, B-lymphocytes, and monocytes. Monocytes could be positively adsorbed, following labeling with anti-CD14 mAb, with a clearance of up to 89% and a depletion factor of 7.6. They could also be
Resumo:
Purpose: This study aimed to evaluate the effects of endostatin on tight junction (TJ) integrity in retinal microvascular endothelial cells (RMECs) in vitro and in vivo. Moreover, it was hypothesized that endostatin-induced occludin upregulation regulated VEGF(165)-mediated increases in endothelial cell permeability and involved activation of the MAPK signaling cascade. Endostatin is a 20-kDa fragment of collagen XVIII that has been shown to be efficacious in the eye by preventing retinal neovascularization. Endostatin is a specific inhibitor of endothelial cell proliferation, migration, and angiogenesis and has been reported to reverse VEGF-mediated increases in vasopermeability and to promote integrity of the blood-retinal barrier (BRB). In order to determine the mechanism of endostatin action on BRB integrity, we have examined the effects of endostatin on a number of intracellular pathways implicated in endothelial cell physiology. Methods: C57/Bl6 mice were injected with VEGF(165) and/or endostatin, and the distribution of occludin staining was determined using retinal flatmounts. Western blot analysis of RMECs treated with VEGF(165) and/or endostatin was used to determine changes in occludin expression and p38 MAPK and extracellular regulated kinase (ERK1/ERK2 MAPK) activation, while FD-4 flux across the RMEC monolayer was used to determine changes in paracellular permeability. Results: Endostatin prevented the discontinuous pattern of occludin staining observed at the retinal blood vessels of mice administered an intraocular injection of VEGF(165). It was shown that endostatin activated p38 MAPK 5 min after addition to RMECs and continued to do so for approximately 30 min. Endostatin was also shown to activate ERK1/ERK2 5 min after addition and continued to do so, albeit with less potency, up to and including 15 min after addition. Inhibition of p38 MAPK and ERK1/ERK2 prevented endostatin's ability to upregulate levels of occludin expression. Inhibition of these key signaling molecules was shown to prevent endostatin's ability to protect against VEGF(165)- mediated increases in paracellular permeability in vitro. However, it appears that p38 MAPK may play a more important role in VEGF-mediated permeability, as inhibition of ERK1/ERK2 will not prevent VEGF(165)- mediated permeability compared with control ( untreated) cells or cells treated with both a p38 MAPK inhibitor and VEGF(165). Conclusions: Occludin is important for the maintenance of tight junction integrity in vivo. In a p38 MAPK and ERK1/ERK2 dependent manner, endostatin was shown to upregulate the levels of expression of the tight junction protein occludin. Inhibition of these key MAPK components may prevent endostatin's ability to decrease VEGF(165)-induced paracellular permeability.
Resumo:
BACKGROUND: Advanced glycation endproducts (AGEs) arise from the spontaneous reaction of reducing sugars with the amino groups of macromolecules. AGEs accumulate in tissue as a consequence of diabetes and aging and have been causally implicated in the pathogenesis of several of the end-organ complications of diabetes and aging, including cataract, atherosclerosis, and renal insufficiency. It has been recently proposed that components in mainstream cigarette smoke can react with plasma and extracellular matrix proteins to form covalent adducts with many of the properties of AGEs. We wished to ascertain whether AGEs or immunochemically related molecules are present at higher levels in the tissues of smokers.
MATERIALS AND METHODS: Lens and coronary artery specimens from nondiabetic smokers and nondiabetic nonsmokers were examined by immunohistochemistry, immunoelectron microscopy, and ELISA employing several distinct anti-AGE antibodies. In addition, lenticular extracts were tested for AGE-associated fluorescence by fluorescence spectroscopy.
RESULTS: Immunoreactive AGEs were present at significantly higher levels in the lenses and lenticular extracts of nondiabetic smokers (p < 0.003). Anti-AGE immunogold staining was diffusely distributed throughout lens fiber cells. AGE-associated fluorescence was significantly increased in the lenticular extracts of nondiabetic smokers (p = 0.005). AGE-immunoreactivity was significantly elevated in coronary arteries from nondiabetic smokers compared with nondiabetic nonsmokers (p = 0.015).
CONCLUSIONS: AGEs or immunochemically related molecules are present at higher levels in the tissues of smokers than in nonsmokers, irrespective of diabetes. In view of previous reports implicating AGEs in a causal association with numerous pathologies, these findings have significant ramifications for understanding the etiopathology of diseases associated with smoking, the single greatest preventable cause of morbidity and mortality in the United States.
Resumo:
The short-term systemic and renal hemodynamic effects of two stroma-free hemoglobin (SFH) solutions, one unmodified and the other modified by cross-linking, were examined in anesthetized rats after hemorrhagic hypotension. Both forms of SFH increased mean arterial pressure (MAP) and glomerular filtration rate (GFR) to baseline (prehemorrhage) values. The increase in MAP induced by unmodified SFH was greater than the increase in MAP caused by an albumin solution isoncotic to the unmodified SFH solution. Similarly, the increase in MAP caused by the modified SFH was also substantially greater than that induced by an albumin solution of comparable oncotic pressure to the modified SFH solution. Both unmodified and modified SFH increased GFR. As with MAP, the increase in GFR induced by both SFH solutions was greater than that associated with the oncotically matched albumin solutions. In separate experiments, the effects of nitric oxide (NO) inhibition with N omega-nitro-L-arginine methyl ester (L-NAME) on MAP after hemorrhagic hypotension and subsequent infusion of unmodified SFH or albumin were also examined. In the albumin-infused rats, L-NAME increased MAP. In marked contrast, NO inhibition with L-NAME had no further effect on MAP when infused after SFH. We conclude that both unmodified and modified SFH solutions acutely improve MAP and GFR by the combined effects of intravascular volume expansion resulting from the colloid effect of the protein and by inactivation of NO.
Resumo:
Haemopoietic stem/progenitor cell (HSPC) development is regulated by extrinsic and intrinsic stimuli. Extrinsic modulators include growth factors and cell adhesion molecules, whereas intrinsic regulation is achieved with many transcription factor families, of which the HOX gene products are known to be important in haemopoiesis. Umbilical cord blood CD133(+) HSPC proliferation potential was tested in liquid culture with 'TPOFLK' (thrombopoietin, flt-3 ligand and c-kit ligand, promoting HSPC survival and self-renewal), in comparison to 'K36EG' (c-kit-ligand, interleukins-3 and -6, erythropoietin and granulocyte colony-stimulating factor, inducing haemopoietic differentiation). TPOFLK induced a higher CD133(+) HSPC proliferation (up to 60-fold more, at week 8) and maintained a higher frequency of the primitive colony-forming cells than K36EG. Quantitative polymerase chain reaction analysis revealed opposite expression patterns for specific HOX genes in expanding cord blood CD133(+) HSPC. After 8 weeks in liquid culture, TPOFLK increased the expression of HOX B3, B4 and A9 (associated with uncommitted HSPC) and reduced the expression of HOX B8 and A10 (expressed in committed myeloid cells) when compared to K36EG. These results suggest that TPOFLK induces CD133(+) HSPC proliferation, self-renewal and maintenance, up-regulation of HOX B3, B4 and A9 and down-regulation of HOX B8 and A10 gene expression.