157 resultados para amphipod assemblages
Resumo:
Arcellacea (testate lobose amoebae) communities were assessed from 73 sediment-water interface samples collected from 33 lakes in urban and rural settings within the Greater Toronto Area (GTA), Ontario, Canada, as well as from forested control areas in the Lake Simcoe area, Algonquin Park and eastern Ontario. The results were used to: (1) develop a statistically rigorous arcellacean-based training set for sedimentary phosphorus (Olsen P (OP)) loading; and (2) derive a transfer function to reconstruct OP levels during the post-European settlement era (AD1870s onward) using a chronologically well-constrained core from Haynes Lake on the environmentally sensitive Oak Ridges Moraine, within the GTA. Ordination analysis indicated that OP most influenced arcellacean assemblages, explaining 6.5% (p < 0.005) of total variance. An improved training set where the influence of other important environmental variables (e.g. total organic carbon, total nitrogen, Mg) was reduced, comprised 40 samples from 31 lakes, and was used to construct a transfer function for lacustrine arcellaceans for sedimentary phosphorus (Olsen P) using tolerance downweighted weighted averaging (WA-Tol) with inverse deshrinking (RMSEPjack-77pp; r2jack = 0.68). The inferred reconstruction indicates that OP levels remained near pre-settlement background levels from settlement in the late AD 1970s through to the early AD 1970s. Since OP runoff from both forests and pasture is minimal, early agricultural land use within the lake catchment was as most likely pasture and/or was used to grow perennial crops such as Timothy-grass for hay. A significant increase in inferred OP concentration beginning ~ AD 1972 may have been related to a change in crops (e.g. corn production) in the catchment resulting in more runoff, and the introduction of chemical fertilizers. A dramatic decline in OP after ~ AD 1985 probably corresponds to a reduction in chemical fertilizer use related to advances in agronomy, which permitted a more precise control over required fertilizer application. Another significant increase in OP levels after ~ AD 1995 may have been related to the construction of a large golf course upslope and immediately to the north of Haynes Lake in AD 1993, where significant fertilizer use is required to maintain the fairways. These results demonstrate that arcellaceans have great potential for reconstructing lake water geochemistry and will complement other proxies (e.g. diatoms) in paleolimnological research.
Resumo:
Loss of biodiversity and nutrient enrichment are two of the main human impacts on ecosystems globally, yet we understand very little about the interactive effects of multiple stressors on natural communities and how this relates to biodiversity and ecosystem functioning. Advancing our understanding requires the following: (1) incorporation of processes occurring within and among trophic levels in natural ecosystems and (2) tests of context-dependency of species loss effects. We examined the effects of loss of a key predator and two groups of its prey on algal assemblages at both ambient and enriched nutrient conditions in a marine benthic system and tested for interactions between the loss of functional diversity and nutrient enrichment on ecosystem functioning. We found that enrichment interacted with food web structure to alter the effects of species loss in natural communities. At ambient conditions, the loss of primary consumers led to an increase in biomass of algae, whereas predator loss caused a reduction in algal biomass (i.e. a trophic cascade). However, contrary to expectations, we found that nutrient enrichment negated the cascading effect of predators on algae. Moreover, algal assemblage structure varied in distinct ways in response to mussel loss, grazer loss, predator loss and with nutrient enrichment, with compensatory shifts in algal abundance driven by variation in responses of different algal species to different environmental conditions and the presence of different consumers. We identified and characterized several context-dependent mechanisms driving direct and indirect effects of consumers. Our findings highlight the need to consider environmental context when examining potential species redundancies in particular with regard to changing environmental conditions. Furthermore, non-trophic interactions based on empirical evidence must be incorporated into food web-based ecological models to improve understanding of community responses to global change.
Resumo:
Coastal systems, such as rocky shores, are among the most heavily anthropogenically-impacted marine ecosystems and are also among the most productive in terms of ecosystem functioning. One of the greatest impacts on coastal ecosystems is nutrient enrichment from human activities such as agricultural run-off and discharge of sewage. The aim of this study was to identify and characterise potential effects of sewage discharges on the biotic diversity of rocky shores and to test current tools for assessing the ecological status of rocky shores in line with the EU Water Framework Directive (WFD). A sampling strategy was designed to test for effects of sewage outfalls on rocky shore assemblages on the east coast of Ireland and to identify the scale of the putative impact. In addition, a separate sampling programme based on the Reduced algal Species List (RSL), the current WFD monitoring tool for rocky shores in Ireland and the UK, was also completed by identifying algae and measuring percent cover in replicate samples on rocky shores during Summer. There was no detectable effect of sewage outfalls on benthic taxon diversity or assemblage structure. However, spatial variability of assemblages was greater at sites proximal or adjacent to sewage outfalls compared to shores without sewage outfalls present. Results based on the RSL, show that algal assemblages were not affected by the presence of sewage outfalls, except when classed into functional groups when variability was greater at the sites with sewage outfalls. A key finding of both surveys, was the prevalence of spatial and temporal variation of assemblages. It is recommended that future metrics of ecological status are based on quantified sampling designs, incorporate changes in variability of assemblages (indicative of community stability), consider shifts in assemblage structure and include both benthic fauna and flora to assess the status of rocky shores.
Resumo:
Studies of trait-mediated indirect interactions (TMIIs) typically focus on effects higher predators have on per capita consumption by intermediate consumers of a third, basal prey resource. TMIIs are usually evidenced by changes in feeding rates of intermediate consumers and/or differences in densities of this third species. However, understanding and predicting effects of TMIIs on population stability of such basal species requires examination of the type and magnitude of the functional responses exhibited towards them. Here, in a marine intertidal system consisting of a higher-order fish predator, the shanny Lipophrys pholis, an intermediate predator, the amphipod Echinogammarus marinus, and a basal prey resource, the isopod Jaera nordmanni, we detected TMIIs, demonstrating the importance of habitat complexity in such interactions, by deriving functional responses and exploring consequences for prey population stability. Echinogammarus marinus reacted to fish predator diet cues by reducing activity, a typical anti-predator response, but did not alter habitat use. Basal prey, Jaera nordmanni, did not respond to fish diet cues with respect to activity, distribution or aggregation behaviour. Echinogammarus marinus exhibited type II functional responses towards J. nordmanni in simple habitat, but type III functional responses in complex habitat. However, while predator cue decreased the magnitude of the type II functional response in simple habitat, it increased the magnitude of the type III functional response in complex habitat. These findings indicate that, in simple habitats, TMIIs may drive down consumption rates within type II responses, however, this interaction may remain de-stabilising for prey populations. Conversely, in complex habitats, TMIIs may strengthen regulatory influences of intermediate consumers on prey populations, whilst potentially maintaining prey population stability. We thus highlight that TMIIs can have unexpected and complex ramifications throughout communities, but can be unravelled by considering effects on intermediate predator functional response types and magnitudes.
Resumo:
A series of shell middens and miscellaneous habitation sites, located in a dune
system in west County Galway, have been exposed and are slowly disappearing
through wind, wave and surface erosion. In 1992 a project was initiated to
record, sample and date some of these sites and the radiocarbon results
demonstrated that activity in the area spanned the Early Bronze Age through to
the Iron Age and into the early and post medieval periods. This preliminary
fieldwork was succeeded by the excavation of three of the better-preserved sites; a Bronze Age midden in 1994 and two early medieval sites (the subject of this paper), in 1997. The medieval sites dated to the late-seventh to ninth century adand were represented by a sub-circular stone hut with a hearth and the charred remains of a more ephemeral wooden tent-like structure. The discovery of a bronze penannular brooch of ninth/tenth century date at the latter site wouldsuggest that the settlements are not the remains of transient, impoverishedpeoples of the lower classes of society, eking out a living along the coast. The calcareous sands ensured good preservation of organic remains*fish and mammal bones, charred cereal grains, seeds and seaweed, and marine molluscs. Analyses of these indicated exploitation of marine resources but, otherwise, were comparable with the diet and economy represented by assemblages from established contemporary site types of the period. Unlike raths, cranno´gs and monastic settlements, however, the volume of material represented at the Galway sites was slight, despite the excellent preservation conditions. A range of seasonal indicators also suggested temporary habitation: probable latespring/summer occupation of the stone hut site and autumnal occupancy of the second, less substantial site. It is suggested that the machair plain, beside which the dunes are located, was most probably the attraction for settlers to the area and was exploited as an alternative pasture for the seasonal grazing of livestock.
*
Resumo:
We investigated relationships between richness patterns of rare and common grassland species and environmental factors, focussing on comparing the degree to which the richness patterns of rare and common species are determined by simple environmental variables. Using data collected in the Machair grassland of the Outer Hebrides of Scotland, we fitted spatial regression models using a suite of grazing, soil physicochemical and microtopographic covariates, to nested sub-assemblages of vascular and non-vascular species ranked according to rarity. As expected, we found that common species drive richness patterns, but rare vascular species had significantly stronger affinity for high richness areas. After correcting for the prevalence of individual species distributions, we found differences between common and rare species in 1) the amount of variation explained: richness patterns of common species were better summarised by simple environmental variables, 2) the associations of environmental variables with richness showed systematic trends between common and rare species with coefficient sign reversal for several factors, and 3) richness associations with rare environments: richness patterns of rare vascular species significantly matched rare environments but those of non-vascular species did not. Richness patterns of rare species, at least in this system, may be intrinsically less predictable than those of common species.
Resumo:
The Klondike goldfields of Yukon, Canada, contain a key record of Pleistocene Beringia, the region of Alaska, Siberia, and Yukon that remained largely unglaciated during the late Cenozoic. A concentration of mining exposures, with relict permafrost that is locally more than 700,000 years old, provides exceptional preservation of paleoenvironmental archives and a new perspective on the nature of paleoenvironments during the Pleistocene. A critical feature is the stratigraphic association of distal tephra beds with these paleoenvironmental archives, which facilitates their regional correlation and, in many cases, provides independent ages for the paleoenvironmental assemblages. Paleoenvironmental analyses of fossil arctic ground-squirrel middens and buried vegetation indicate the presence of cryoxerophilous ("steppe-tundra") vegetation growing on well-drained substrates with deep active layers (seasonal thaw depths) during cold intervals of the Pleistocene. Studies of full-glacial paleosols and cryostratigraphic relations of associated ground ice indicate the importance of active loess deposition and surface vegetation cover in maintaining the functionally distinct mammoth-steppe biome, which supported grazing mega-fauna populations, including mammoth, horse, and bison.
Resumo:
Knowledge about the diet of fish-eating predators is critical when evaluating conflicts with the fishing industry. Numerous primary studies have examined the diet of grey seals Halichoerus grypus and common seals Phoca vitulina in a bid to understand the ecology of these predators. However, studies of large-scale spatial and temporal variation in seal diet are limited. Therefore this review combines the results of seal diet studies published between 1980 and 2000 to examine how seal diet varies at a range of spatial and temporal scales. Our results revealed extensive spatial variation in gadiform, perciform and flatfish consumption, likely reflecting variation in prey availability. Flatfish and gadiform consumption varied between years, reflecting changes in fish assemblages as a consequence of factors such as varying fishing pressures, climate change and natural fluctuations in populations. Perciform and gadiform consumption varied seasonally: in addition there was a significant interaction between season and seal species, indicating that grey and common seals exhibited different patterns of seasonal variation in their consumption of Perciformes and Gadiformes. Multivariate analysis of grey seal diet revealed spatial variation at a much smaller scale, with different species dominating the diet in different areas. The existence of spatial and temporal variation in seal diet emphasizes that future assessments of the impact of seal populations should not be based on past or localized estimates of diet and highlights the need for up-to-date, site specific estimates of diet composition in the context of understanding and resolving seal/fisheries conflict. © 2012 Marine Biological Association of the United Kingdom.
Resumo:
Geochemical variables (TOC, C/N, TS, delta C-13) and diatom assemblages were analyzed in a lake sediment sequence from Nong (Lake) Han Kumphawapi in northeast Thailand to reconstruct regional climatic and environmental history during the Holocene. By around c. 10,000-9400 cal yr BP, a large shallow freshwater lake had formed in the Kumphawapi basin. Oxygenated bottom waters and a well-mixed water column were characteristic of this early lake stage, which was probably initiated by higher effective moisture and a stronger summer monsoon. Decreased run-off after c. 6700 cal yr BP favored increased aquatic productivity in the shallow lake. Multiple proxies indicate a marked lowering of the lake level around 5900 cal yr BP, the development of an extensive wetland around 5400 cal yr BP, and the subsequent transition to a peatland. The shift from shallow lake to wetland and later to a peatland is interpreted as a response to lower effective moisture. A hiatus at the transition from wetland to peatland suggests very low accumulation rates, which may result from very dry climatic conditions. A rise in groundwater and lake level around 3200 cal yr BP allowed the re-establishment of a wetland in the Kumphawapi basin. However, the sediments deposited between c. 3200 and 1600 cal yr BP provide evidence for at least two hiatuses at c. 2700-2500 cal yr BP, and at c. 1900-1600 cal yr BP, which would suggest surface dryness and consequently periods of low effective moisture. Around 1600 cal yr BP a new shallow lake became re-established in the basin. Although the underlying causes for this new lake phase remain unclear, we hypothesize that higher effective moisture was the main driving force. This shallow lake phase continued up to the present but was interrupted by higher nutrient fluxes to the lake around 1000-600 cal yr BP. Whether this was caused by intensified human impact in the catchment or, whether this signals a lowering of the lake level due to reduced effective moisture, needs to be corroborated by further studies in the region. The multi-proxy study of Kumphawapi's sediment core CP3A clearly shows that Kumphawapi is a sensitive archive for recording past shifts in effective moisture, and as such in the intensity of the Asian summer monsoon. Many more continental paleorecords, however, will be needed to fully understand the spatial and temporal patterns of past changes in Asian monsoon intensity and its ecosystem impacts. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Thecamoebians were examined from 123 surface sediment samples collected from 45 lakes in the Greater Toronto Area (GTA) and the surrounding region to i) elucidate the controls on faunal distribution in modern lake environments; and ii) to consider the utility of thecamoebians in quantitative studies of water quality change. This area was chosen because it includes a high density of lakes that are threatened by urban development and where water quality has deteriorated locally as a result of contaminant inputs, particularly nutrients. Canonical Correspondence analysis (CCA) and a series of partial CCAs were used to examine species-environment relationships. Twenty-four environmental variables were considered, including water properties (e.g. pH, DO, conductivity), substrate characteristics, nutrient loading, and environmentally available metals. The thecamoebian assemblages showed a strong association with Olsen's Phosphorus, reflecting the eutrophic status of many of the lakes, and locally to elevated conductivity measurements, which appear to reflect road salt inputs associated with winter de-icing operations. A transfer function was developed for Olsen P using this training set based on weighted averaging with inverse deshrinking (WA Inv). The model was applied to infer past changes in Phosphorus enrichment in core samples from several lakes, including eutrophic Haynes Lake within the GTA. Thecamoebian-inferred changes in sedimentary Phosphorus from a 210Pb dated core from Haynes Lake are related to i) widespread introduction of chemical fertilizers to agricultural land in the post WWII era; ii) a steep decline in Phosphorous with a change in agricultural practices in the late 1970s; and iii) the construction of a golf course in close proximity to the lake in the early 1990s. This preliminary study confirms that thecamoebians have considerable potential as indicators of eutrophication in lakes and can provide an estimate of baseline conditions.
Resumo:
Plant and animal biodiversity can be studied by obtaining DNA directly from the environment. This new approach in combination with the use of generic barcoding primers (metabarcoding) has been suggested as complementary or alternative to traditional biodiversity monitoring in ancient soil sediments. However, the extent to which metabarcoding truly reflects plant composition remains unclear, as does its power to identify species with no pollen or macrofossil evidence. Here, we compared pollen-based and metabarcoding approaches to explore the Holocene plant composition around two lakes in central Scandinavia. At one site, we also compared barcoding results with those obtained in earlier studies with species-specific primers. The pollen analyses revealed a larger number of taxa (46), of which the majority (78%) was not identified by metabarcoding. The metabarcoding identified 14 taxa (MTUs), but allowed identification to a lower taxonomical level. The combined analyses identified 52 taxa. The barcoding primers may favour amplification of certain taxa, as they did not detect taxa previously identified with species-specific primers. Taphonomy and selectiveness of the primers are likely the major factors influencing these results. We conclude that metabarcoding from lake sediments provides a complementary, but not an alternative, tool to pollen analysis for investigating past flora. In the absence of other fossil evidence, metabarcoding gives a local and important signal from the vegetation, but the resulting assemblages show limited capacity to detect all taxa, regardless of their abundance around the lake. We suggest that metabarcoding is followed by pollen analysis and the use of species-specific primers to provide the most comprehensive signal from the environment. © 2013 Blackwell Publishing Ltd.
Resumo:
1. Ecologists are debating the relative role of deterministic and stochastic determinants of community structure. Although the high diversity and strong spatial structure of soil animal assemblages could provide ecologists with an ideal ecological scenario, surprisingly little information is available on these assemblages.
2. We studied species-rich soil oribatid mite assemblages from a Mediterranean beech forest and a grassland. We applied multivariate regression approaches and analysed spatial autocorrelation at multiple spatial scales using Moran's eigenvectors. Results were used to partition community variance in terms of the amount of variation uniquely accounted for by environmental correlates (e.g. organic matter) and geographical position. Estimated neutral diversity and immigration parameters were also applied to a soil animal group for the first time to simulate patterns of community dissimilarity expected under neutrality, thereby testing neutral predictions.
3. After accounting for spatial autocorrelation, the correlation between community structure and key environmental parameters disappeared: about 40% of community variation consisted of spatial patterns independent of measured environmental variables such as organic matter. Environmentally independent spatial patterns encompassed the entire range of scales accounted for by the sampling design (from tens of cm to 100 m). This spatial variation could be due to either unmeasured but spatially structured variables or stochastic drift mediated by dispersal. Observed levels of community dissimilarity were significantly different from those predicted by neutral models.
4. Oribatid mite assemblages are dominated by processes involving both deterministic and stochastic components and operating at multiple scales. Spatial patterns independent of the measured environmental variables are a prominent feature of the targeted assemblages, but patterns of community dissimilarity do not match neutral predictions. This suggests that either niche-mediated competition or environmental filtering or both are contributing to the core structure of the community. This study indicates new lines of investigation for understanding the mechanisms that determine the signature of the deterministic component of animal community assembly.
Resumo:
Extreme arid regions in the worlds' major deserts are typified by quartz pavement terrain. Cryptic hypolithic communities colonize the ventral surface of quartz rocks and this habitat is characterized by a relative lack of environmental and trophic complexity. Combined with readily identifiable major environmental stressors this provides a tractable model system for determining the relative role of stochastic and deterministic drivers in community assembly. Through analyzing an original, worldwide data set of 16S rRNA-gene defined bacterial communities from the most extreme deserts on the Earth, we show that functional assemblages within the communities were subject to different assembly influences. Null models applied to the photosynthetic assemblage revealed that stochastic processes exerted most effect on the assemblage, although the level of community dissimilarity varied between continents in a manner not always consistent with neutral models. The heterotrophic assemblages displayed signatures of niche processes across four continents, whereas in other cases they conformed to neutral predictions. Importantly, for continents where neutrality was either rejected or accepted, assembly drivers differed between the two functional groups. This study demonstrates that multi-trophic microbial systems may not be fully described by a single set of niche or neutral assembly rules and that stochasticity is likely a major determinant of such systems, with significant variation in the influence of these determinants on a global scale.
Resumo:
Although exogenous factors such as pollutants can act on endogenous drivers (e.g. dispersion) of populations and create spatially autocorrelated distributions, most statistical techniques assume independence of error terms. As there are no studies on metal soil pollutants and microarthropods that explicitly analyse this key issue, we completed a field study of the correlation between Oribatida and metal concentrations in litter, organic matter and soil in an attempt to account for spatial patterns of both metals and mites. The 50-m wide study area had homogenous macroscopic features, steep Pb and Cu gradients and high levels of Zn and Cd. Spatial models failed to detect metal-oribatid relationships because the observed latitudinal and longitudinal gradients in oribatid assemblages were independent of the collinear gradients in the concentration of metals. It is therefore hypothesised that other spatially variable factors (e.g. fungi, reduced macrofauna) affect oribatid assemblages, which may be influenced by metals only indirectly. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Animal communities are sensitive to environmental disturbance, and several multivariate methods have recently been developed to detect changes in community structure. The complex taxonomy of soil invertebrates constrains the use of the community level in monitoring environmental changes, since species identification requires expertise and time. However, recent literature data on marine communities indicate that little multivariate information is lost in the taxonomic aggregation of species data to high rank taxa. In the present paper, this hypothesis was tested on two oribatid mite (oribatida, Acari) assemblages under two different kinds of disturbance: metal pollution and fires. Results indicate that data sets built at the genus and family systematic rank can detect the effects of disturbance with little loss of information. This is an encouraging result in view of the use of the community level as a preliminary tool for describing patterns of human-disturbed soil ecosystems. (c) 2006 Elsevier SAS. All rights reserved.