119 resultados para accelerometri magnetometri scanner 3D Kinect


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerical methods have enabled the simulation of complex problems in off-shore and marine engineering. A significant challenge in these simulations is the creation of a realistic wave field. A good numerical tank requires wave creation and absorption of waves at various locations. Several numerical wavemakers with these capabilities have been presented in the past. This paper reviews four different wave-maker methods and discusses limitations, computational efficiency, requirements on the mesh and preprocessing and complexity of implementation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report calculations of energy levels, radiative decay rates, and lifetimes for transitions among the 3s23p5, 3s3p6, and 3s23p43d configurations of Cl-like W LVIII. The general-purpose relativistic atomic structure package (GRASP) has been adopted for our calculations. Comparisons are made with the most recent results of Mohan et al. (Can. J. Phys. 92, 177 (2014). doi:10.1139/cjp-2013-0348) and discrepancies in lifetimes are noted, up to four orders of magnitude in some instances. Our energy levels are estimated to be accurate to better than 0.5%, whereas results for radiative rates and lifetimes should be accurate to better than 20%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: The 'scaly-foot gastropod' (Chrysomallon squamiferum Chen et al., 2015) from deep-sea hydrothermal vent ecosystems of the Indian Ocean is an active mobile gastropod occurring in locally high densities, and it is distinctive for the dermal scales covering the exterior surface of its foot. These iron-sulfide coated sclerites, and its nutritional dependence on endosymbiotic bacteria, are both noted as adaptations to the extreme environment in the flow of hydrogen sulfide. We present evidence for other adaptations of the 'scaly-foot gastropod' to life in an extreme environment, investigated through dissection and 3D tomographic reconstruction of the internal anatomy.

Results: Our anatomical investigations of juvenile and adult specimens reveal a large unganglionated nervous system, a simple and reduced digestive system, and that the animal is a simultaneous hermaphrodite. We show that Chrysomallon squamiferum relies on endosymbiotic bacteria throughout post-larval life. Of particular interest is the circulatory system: Chrysomallon has a very large ctenidium supported by extensive blood sinuses filled with haemocoel. The ctenidium provides oxygen for the host but the circulatory system is enlarged beyond the scope of other similar vent gastropods. At the posterior of the ctenidium is a remarkably large and well-developed heart. Based on the volume of the auricle and ventricle, the heart complex represents approximately 4 % of the body volume. This proportionally giant heart primarily sucks blood through the ctenidium and supplies the highly vascularised oesophageal gland. Thus we infer the elaborate cardiovascular system most likely evolved to oxygenate the endosymbionts in an oxygen poor environment and/or to supply hydrogen sulfide to the endosymbionts.

Conclusions: This study exemplifies how understanding the autecology of an organism can be enhanced by detailed investigation of internal anatomy. This gastropod is a large and active species that is abundant in its hydrothermal vent field ecosystem. Yet all of its remarkable features-protective dermal sclerites, circulatory system, high fecundity-can be viewed as adaptations beneficial to its endosymbiont microbes. We interpret these results to show that, as a result of specialisation to resolve energetic needs in an extreme chemosynthetic environment, this dramatic dragon-like species has become a carrying vessel for its bacteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe a novel strategy for in situ fabrication of hierarchical Fe3O4 nanoclusters-GAs. Fe3O4 NCs-GAs deliver excellent rate capability (the reversible capacities obtained were 1442, 392 and 118 mA h g-1 at 0.1C, 12C and 35C rates), and a high reversible capacity of 577 mA h g-1 over 300 cycles at the current density of 5.2 A g-1 (6C).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The three dimensional (3D) printing technology has undergone rapid development in the last few years and it is now possible to print engineering structures. This paper presents a study of the mechanical behavior of 3D printed structures using cementitious powder. Microscopic observation reveals that the 3D printed products have a layered orthotropic microstructure, in which each layer consists of parallel strips. Compression and flexural tests were conducted to determine the mechanical properties and failure characteristics of such materials. The test results confirmed that the 3D printed structures are laminated with apparent orthotropy. Based on the experimental results, a stress-strain relationship and a failure criterion based on the maximum stress criterion for orthotropic materials are proposed for the structures of 3D printed material. Finally, a finite element analysis was conducted for a 3D printed shell structure, which shows that the printing direction has a significant influence on the load bearing capacity of the structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As an emerging hole-machining methodology, helical milling process has become increasingly popular in aeromaterials manufacturing research, especially in areas of aircraft structural parts, dies, and molds manufacturing. Helical milling process is highly demanding due to its complex tool geometry and the progressive material failure on the workpiece. This paper outlines the development of a 3D finite element model for helical milling hole of titanium alloy Ti-6Al-4V using commercial FE code ABAQUS/Explicit. The proposed model simulates the helical milling hole process by taking into account the damage initiation and evolution in the workpiece material. A contact model at the interface between end-mill bit and workpiece has been established and the process parameters specified. Furthermore, a simulation procedure is proposed to simulate different cutting processes with the same failure parameters. With this finite element model, a series of FEAs for machined titanium alloy have been carried out and results compared with laboratory experimental data. The effects of machining parameters on helical milling have been elucidated, and the capability and advantage of FE simulation on helical milling process have been well presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Richardson–Lucy algorithm is one of the most important in image deconvolution. However, a drawback is its slow convergence. A significant acceleration was obtained using the technique proposed by Biggs and Andrews (BA), which is implemented in the deconvlucy function of the image processing MATLAB toolbox. The BA method was developed heuristically with no proof of convergence. In this paper, we introduce the heavy-ball (H-B) method for Poisson data optimization and extend it to a scaled H-B method, which includes the BA method as a special case. The method has a proof of the convergence rateof O(K^2), where k is the number of iterations. We demonstrate the superior convergence performance, by a speedup factor off ive, of the scaled H-B method on both synthetic and real 3D images.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a method for rational behaviour recognition that combines vision-based pose estimation with knowledge modeling and reasoning. The proposed method consists of two stages. First, RGB-D images are used in the estimation of the body postures. Then, estimated actions are evaluated to verify that they make sense. This method requires rational behaviour to be exhibited. To comply with this requirement, this work proposes a rational RGB-D dataset with two types of sequences, some for training and some for testing. Preliminary results show the addition of knowledge modeling and reasoning leads to a significant increase of recognition accuracy when compared to a system based only on computer vision.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent measurements using an X-ray Free Electron Laser (XFEL) and an Electron Beam Ion Trap at the Linac Coherent Light Source facility highlighted large discrepancies between the observed and theoretical values for the Fe XVII 3C/3D line intensity ratio. This result raised the question of whether the theoretical oscillator strengths may be significantly in error, due to insufficiencies in the atomic structure calculations. We present time-dependent spectral modeling of this experiment and show that non-equilibrium effects can dramatically reduce the predicted 3C/3D line intensity ratio, compared with that obtained by simply taking the ratio of oscillator strengths. Once these non-equilibrium effects are accounted for, the measured line intensity ratio can be used to determine a revised value for the 3C/3D oscillator strength ratio, giving a range from 3.0 to 3.5. We also provide a framework to narrow this range further, if more precise information about the pulse parameters can be determined. We discuss the implications of the new results for the use of Fe XVII spectral features as astrophysical diagnostics and investigate the importance of time-dependent effects in interpreting XFEL-excited plasmas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When a planet transits its host star, it blocks regions of the stellar surface from view; this causes a distortion of the spectral lines and a change in the line-of-sight (LOS) velocities, known as the Rossiter-McLaughlin (RM) effect. Since the LOS velocities depend, in part, on the stellar rotation, the RM waveform is sensitive to the star-planet alignment (which provides information on the system’s dynamical history). We present a new RM modelling technique that directly measures the spatially-resolved stellar spectrum behind the planet. This is done by scaling the continuum flux of the (HARPS) spectra by the transit light curve, and then subtracting the infrom the out-of-transit spectra to isolate the starlight behind the planet. This technique does not assume any shape for the intrinsic local profiles. In it, we also allow for differential stellar rotation and centre-to-limb variations in the convective blueshift. We apply this technique to HD 189733 and compare to 3D magnetohydrodynamic (MHD) simulations. We reject rigid body rotation with high confidence (>99% probability), which allows us to determine the occulted stellar latitudes and measure the stellar inclination. In turn, we determine both the sky-projected (λ ≈ −0.4 ± 0.2◦) and true 3D obliquity (ψ ≈ 7+12 −4 ◦ ). We also find good agreement with the MHD simulations, with no significant centre-to-limb variations detectable in the local profiles. Hence, this technique provides a new powerful tool that can probe stellar photospheres, differential rotation, determine 3D obliquities, and remove sky-projection biases in planet migration theories. This technique can be implemented with existing instrumentation, but will become even more powerful with the next generation of high-precision radial velocity spectrographs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 3D intralaminar continuum damage mechanics based material model, combining damage mode interaction and material nonlinearity, was developed to predict the damage response of composite structures undergoing crush loading. This model captures the structural response without the need for calibration of experimentally determined material parameters. When used in the design of energy absorbing composite structures, it can reduce the dependence on physical testing. This paper validates this model against experimental data obtained from the literature and in-house testing. Results show that the model can predict the force response of the crushed composite structures with good accuracy. The simulated energy absorption in each test case was within 12% of the experimental value. Post-crush deformation and the damage morphologies, such as ply splitting, splaying and breakage, were also accurately reproduced. This study establishes the capability of this damage model for predicting the responses of composite structures under crushing loads.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Linear aerospike nozzles are envisaged as a possible device able to improve launcher engine performance. One of the most interesting properties of these nozzles is the possibility of a good integration with the vehicle. Tb improve the knowledge of the flow-field and performance of aerospike nozzles, they are studied numerically, with particular attention to the differences between the basic two-dimensional nozzle, usually considered in the design phase, and the more realistic three-dimensional nozzle. The study considers different plug lengths and ambient pressures to assess the role of the linear plug side truncation on the base pressure behavior. Numerical tests are carried out at supersonic flight Mach number. Copyright © 2005 by M. Geron and R. Paciorri.F. Nasuti, F. Sabetta, E. Martelli.