176 resultados para Wisconsin Infantry. 2d Regiment, 1898. Co. C
Resumo:
The skin secretions of frogs and toads (Anura) have long been a known source of a vast abundance of bioactive substances. In the past decade, transcriptome data of the granular glands of anuran skin has given new impetus to investigations of the putative constituent peptides. Alytes obstetricans was recently investigated and novel peptides with antimicrobial activity were isolated and functionally characterised. However, genetic data for the evolutionarily ancient lineage to which Alytes belongs (midwife toads; Alytidae) remains unavailable.
Here we present the first such genetic data for Alytidae, derived via the granular gland transcriptome of a closely-related species of midwife toad, Alytes maurus. First, we present nucleotide sequences of the entire peptide precursors for four novel antimicrobial peptides (AMPs). The two precursors resemble those from Bombinatoridae in both their structural architecture and amino acid sequence. Each precursor comprises two AMPs as tandem repeats, with a member of the alyteserin-1 family (alyteserin-1Ma: GFKEVLKADLGSLVKGIAAHVAN-NH2 or alyteserin-1Mb: GFKEVLKAGLGSLVKGIPAHVAN-NH2) followed by its corresponding member from the alyteserin-2 family (alyteserin-2Ma: FIGKLISAASGLLSHL-NH2 or alyteserin-2Mb: ILGAIIPLVSGLLSHL-NH2). Synthetic replicates of the four AMPs possessed minimal inhibitory concentrations (MICs) ranging from 9.5 to 300 µM, with the most potent being alyteserin-2Ma. Second, we also cloned the cDNA encoding an alytesin precursor, with the active alytesin exhibiting high sequence identity to bombesin-related peptides from other frogs. All putative mature peptide sequences were confirmed to be present in the skin secretion via LC/MS.
The close structural resemblance of the alyteserin genes that we isolated for A. maurus with those of Bombina provide independent molecular evidence for a close evolutionary relationship between these genera as well as more support for the convergent evolution of the AMP system within anurans. In contrast to the more evolutionarily conserved nature of neuropeptides (including alytesin, which we also isolated), the more variable nature of the AMP system together with the sporadic distribution of AMPs among anuran amphibians fuels in part our hypothesis that the latter system was co-opted secondarily to fulfil a function in the innate immune system, having originally evolved for defence against potential macropredators.
Resumo:
C-type lectin-like proteins (CTLPs) isolated from snake venoms are the largest and most complex non-mammalian vertebrate C-type lectin-like domain family. In the present study, we simultaneously amplified four cDNAs encoding different types of CTLP subunits from the venoms of two different species of snakes by RT-PCR with a single sense primer and a nested universal primer - two CTLP subunit-encoding cDNAs were cloned from Deinagkistrodon acutus venom and two from Agkistrodon halys Pallas venom. All four cloned CTLP subunits exhibited typical motifs in their corresponding domain regions but with relatively-low sequence similarities to each other. Compared with previously-published CTLPs, the four cloned CTLPs subunits showed slight variations in the calcium-binding sites and the disulphide bonding patterns. To our knowledge, these data constitute the first example of co-expression of CTLP platelet glycoprotein Ib-binding subunits and coagulation factors in Agkistrodon halys Pallas venom.
Resumo:
The influence of poly(ethylene glycol) (PEG) plasticiser content and molecular weight on the physicochemical properties of films cast from aqueous blends of poly(methyl vinyl ether-co-maleic acid) was investigated using thermal analysis, swelling studies, scanning electron microscopy (SEM) and attenuated total reflectance (ATR)-Fourier transform infrared (FTIR) spectroscopy. FTIR spectroscopy revealed a shift of the C{double bond, long}O peak from 1708 to 1731 cm, indicating that an esterification reaction had occurred upon heating, thus producing crosslinked films. Higher molecular weight PEGs (10,000 and 1000 Da, respectively), having greater chain length, producing hydrogel networks with lower crosslink densities and higher average molecular weight between two consecutive crosslinks. Accordingly, such materials exhibited higher swelling rates. Hydrogels crosslinked with a low molecular weight PEG (PEG 200) showed rigid networks with high crosslink densities and, therefore, lower swelling rates. Polymer:plasticizer ratio alteration did not yield any discernable patterns, regardless of the method of analysis. The polymer-water interaction parameter (?) increased with increases in the crosslink density. SEM studies showed that porosity of the crosslinked films increased with increasing PEG MW, confirming what had been observed with swelling studies and thermal analysis, that the crosslink density must be decreased as the M of the crosslinker is increased. Hydrogels containing PMVE/MA/PEG 10,000 could be used for rapid delivery of drug, due to their low crosslink density. Moderately crosslinked PMVE/MA/PEG 1000 hydrogels or highly crosslinked PMVE/MA/PEG 200 systems could then be used in controlling the drug delivery rates. We are currently evaluating these systems, both alone and in combination, for use in sustained release drug delivery devices. © 2008 Elsevier Ltd. All rights reserved.
Resumo:
How can interlocking directorates cause financial instability for universal banks? A detailed history of the Rotterdamsche Bankvereeninging in the 1920s answers this question in a case study. This large commercial bank adopted a new German-style universal banking business model from the early 1910s, sharing directors with the firms it financed as a means of controlling its interests. Then, in 1924, it required assistance from the Dutch state in order to survive a bank run brought on by public concerns over its close ties with Müller & Co., a trading conglomerate that suffered badly in the economic downturn of the early 1920s. Using a new narrative history combined with an interpretive model, this article shows how the interlocking directorates between the bank and this major client, and in particular the direction of influence of these interlocks, resulted in a conflict of interest that could not be easily overcome.
Resumo:
Diagnosing psychotic disorders in young people is difficult. High rates of co-morbidity may be one reason for this difficulty, but it may also be the case that current diagnostic categories are not the most useful when approaching the care of young people with psychotic symptoms. The Northern Ireland Early Onset Psychosis Study is the first study to investigate psychotic disorders in children and adolescents in this region. Young people presenting with psychotic symptoms with onset before their 18th birthday were prospectively ascertained over a three-year period (2001-2004). Those who provided informed consent were subject to a diagnostic interview using the Kiddie-Schedule for Affective Disorders and Schizophrenia - Present and Lifetime Version. Twenty-five young people have completed the full assessment process to date. Ten young people met criteria for schizophrenia, 11 for affective psychosis, two for schizoaffective disorder and two for schizophreniform disorder. Twenty-one (80%) subjects also fulfilled criteria for at least one other DSM-IV diagnosis. In conclusion, whilst all subjects met criteria for one or other psychotic disorder, co-morbidity was common in this clinical sample. Greater awareness of the difficulties encountered when trying to reach a diagnosis in this age group may help to improve treatment outcomes.
Resumo:
We have performed density functional theory (DFT) calculations to investigate the reaction mechanism of the cleavage of the carbonyl bond in amides on both flat and stepped Ru surfaces. The simplest amide molecule, N,N-dimethylacetamide (DMA), was used as the exemplar model molecule. Through the calculations, the most stable transition states (TSs) in all the pathways on both flat and stepped Ru surfaces are identified. Comparing the energy profiles of different reaction pathways, we find that a direct cleavage mechanism is always energetically favored as compared with an alternative hydrogen-induced mechanism on either the flat or stepped Ru surface. It is easier for the dissociation process to occur on the stepped surface than on the flat surface. However, as compared with the terrace, the superiority of step sites boosting the C-O bond dissociation is not as evident as that on CO dissociation.
Resumo:
We characterized hydrogels, prepared from aqueous blends of poly(methyl vinyl ether-co-maleic acid) (PMVE/MA) and poly(ethylene glycol) (PEG 10,000 Daltons) containing a pore-forming agent (sodium bicarbonate, NaHCO ). Increase in NaHCO content increased the equilibrium water content (EWC) and average molecular weight between crosslinks (M ) of hydrogels. For example, the %EWC was 731, 860, 1109, and 7536% and the M was 8.26, 31.64, 30.04, and 3010.00 × 10 g/mol for hydrogels prepared from aqueous blends containing 0, 1, 2, and 5% w/w of NaHCO , respectively. Increase in NaHCO content also resulted in increased permeation of insulin. After 24 h, percentage permeation was 0.94, 3.68, and 25.71% across hydrogel membranes prepared from aqueous blends containing 0, 2, and 5% w/w of NaHCO , respectively. Hydrogels containing the pore-forming agent were fabricated into microneedles (MNs) for transdermal drug delivery applications by integrating the MNs with insulin-loaded patches. It was observed that the mean amount of insulin permeating across neonatal porcine skin in vitro was 20.62% and 52.48% from hydrogel MNs prepared from aqueous blends containing 0 and 5% w/w of NaHCO . We believe that these pore-forming hydrogels are likely to prove extremely useful for applications in transdermal drug delivery of biomolecules. © 2012 Wiley Periodicals, Inc.
Resumo:
The efficacious delivery of antigens to antigen-presenting cells (APCs), in particular, to dendritic cells (DCs), and their subsequent activation remains a significant challenge in the development of effective vaccines. This study highlights the potential of dissolving microneedle (MN) arrays laden with nanoencapsulated antigen to increase vaccine immunogenicity by targeting antigen specifically to contiguous DC networks within the skin. Following in situ uptake, skin-resident DCs were able to deliver antigen-encapsulated poly-d,l-lactide-co-glycolide (PGLA) nanoparticles to cutaneous draining lymph nodes where they subsequently induced significant expansion of antigen-specific T cells. Moreover, we show that antigen-encapsulated nanoparticle vaccination via microneedles generated robust antigen-specific cellular immune responses in mice. This approach provided complete protection in vivo against both the development of antigen-expressing B16 melanoma tumors and a murine model of para-influenza, through the activation of antigen-specific cytotoxic CD8(+) T cells that resulted in efficient clearance of tumors and virus, respectively. In addition, we show promising findings that nanoencapsulation facilitates antigen retention into skin layers and provides antigen stability in microneedles. Therefore, the use of biodegradable polymeric nanoparticles for selective targeting of antigen to skin DC subsets through dissolvable MNs provides a promising technology for improved vaccination efficacy, compliance, and coverage.
Resumo:
We report the combined studies of density functional theory (DFT) calculations and electrochemical in situ FTIR spectroscopy on surface oxidants and mechanisms of CO oxidation at the Ru(0001) electrodes. It is shown that CO can co-adsorb with both O and OH species at lower potential region where a low coverage of the (2 x 2)-O/OH adlayer formed; the oxidation of CO adsorbates takes place at higher potentials where a high coverage of the (1 x 1)-O/OH adlayer formed. Surface O species are not the active oxidants under all coverages studied, due to the high reaction barriers between CO and O (>1 eV). However, surface OH species with higher coverage are identified as the active oxidants, and CO oxidation takes place via a two-steps' mechanism of CO + 3OH -> COOH + 2OH -> CO2 + H2O + OH, in which three nearby OH species are involved in the CO2 formation: CO reacts with OH, forming COOH; COOH then transfers the H to a nearby OH to form H2O and CO2, at the same time, another H in the H2O transfers to a nearby OH to form a weak adsorbed H2O and a new OH. The reaction barrier of these processes is reduced significantly to around 0.50 eV. These new results not only provide an insight into surface active oxidants on Ru, which is directly relevant to fuel cell catalysis, but also reveals the extra complexity of catalytic reactions taking place at solid/liquid electrochemical interface in comparison to the relatively simpler ones at solid/gas phase.
Resumo:
Explosions of sub-Chandrasekhar-mass white dwarfs (WDs) are one alternative to the standard Chandrasekhar-mass model of Type Ia supernovae (SNe Ia). They are interesting since binary systems with sub-Chandrasekhar-mass primary WDs should be common and this scenario would suggest a simple physical parameter which determines the explosion brightness, namely the mass of the exploding WD. Here we perform one-dimensional hydrodynamical simulations, associated post-processing nucleosynthesis, and multi-wavelength radiation transport calculations for pure detonations of carbon-oxygen WDs. The light curves and spectra we obtain from these simulations are in good agreement with observed properties of SNe Ia. In particular, for WD masses from 0.97 to 1.15 Msun we obtain 56Ni masses between 0.3 and 0.8 Msun, sufficient to capture almost the complete range of SN Ia brightnesses. Our optical light curve rise times, peak colors, and decline timescales display trends which are generally consistent with observed characteristics although the range of B-band decline timescales displayed by our current set of models is somewhat too narrow. In agreement with observations, the maximum light spectra of the models show clear features associated with intermediate-mass elements and reproduce the sense of the observed correlation between explosion luminosity and the ratio of the Si II lines at ?6355 and ?5972. We therefore suggest that sub-Chandrasekhar-mass explosions are a viable model for SNe Ia for any binary evolution scenario leading to explosions in which the optical display is dominated by the material produced in a detonation of the primary WD. © 2010. The American Astronomical Society.
Resumo:
Thermonuclear explosions may arise in binary star systems in which a carbon-oxygen (CO) white dwarf (WD) accretes helium-rich material from a companion star. If the accretion rate allows a sufficiently large mass of helium to accumulate prior to ignition of nuclear burning, the helium surface layer may detonate, giving rise to an astrophysical transient. Detonation of the accreted helium layer generates shock waves that propagate into the underlying CO WD. This might directly ignite a detonation of the CO WD at its surface (an edge-lit secondary detonation) or compress the core of the WD sufficiently to trigger a CO detonation near the centre. If either of these ignition mechanisms works, the two detonations (helium and CO) can then release sufficient energy to completely unbind the WD. These 'double-detonation' scenarios for thermonuclear explosion of WDs have previously been investigated as a potential channel for the production of Type Ia supernovae from WDs of ~ 1 M . Here we extend our 2D studies of the double-detonation model to significantly less massive CO WDs, the explosion of which could produce fainter, more rapidly evolving transients. We investigate the feasibility of triggering a secondary core detonation by shock convergence in low-mass CO WDs and the observable consequences of such a detonation. Our results suggest that core detonation is probable, even for the lowest CO core masses that are likely to be realized in nature. To quantify the observable signatures of core detonation, we compute spectra and light curves for models in which either an edge-lit or compression-triggered CO detonation is assumed to occur. We compare these to synthetic observables for models in which no CO detonation was allowed to occur. If significant shock compression of the CO WD occurs prior to detonation, explosion of the CO WD can produce a sufficiently large mass of radioactive iron-group nuclei to significantly affect the light curves. In particular, this can lead to relatively slow post-maximum decline. If the secondary detonation is edge-lit, however, the CO WD explosion primarily yields intermediate-mass elements that affect the observables more subtly. In this case, near-infrared observations and detailed spectroscopic analysis would be needed to determine whether a core detonation occurred. We comment on the implications of our results for understanding peculiar astrophysical transients including SN 2002bj, SN 2010X and SN 2005E. © 2012 The Authors Monthly Notices of the Royal Astronomical Society © 2012 RAS.
Resumo:
The immunogenicity of proteins encapsulated in poly(DL-lactide-co-glycolide) (PLG) microspheres has not been investigated to any extent in large animal models. In this study, IgG and IgA responses to ovalbumin (OVA), encapsulated in microspheres was investigated following intranasal inoculation into calves. Scanning electron microscopy and flow cytometric analysis demonstrated a uniform microsphere population with a diameter of <2.5 micrometers. Ovalbumin was released steadily from particles stored in PBS almost in a linear fashion, and after 4 weeks many particles showed cracks and fissures in their surface structure. Following intranasal inoculation of calves with different doses of encapsulated antigen, mean levels of ovalbumin-specific IgA were observed to increase steadily but significant differences in IgA levels (from the pre-inoculation level) were only observed following a second intranasal inoculation. With 0.5 and 1.0mg doses of antigen, ovalbumin-specific IgG was also detected in serum. Ovalbumin-specific IgA persisted in nasal secretions for a considerable period of time and were still detectable in four out of seven animals, 6 months after inoculation.
Resumo:
The metal-organic framework [Co(INA)(2)].0.5EtOH (INA = isonicotinate, NC5H4-4-CO2-), 1 was synthesised under solvothermal conditions. Its X-ray crystal structure shows channels containing ethanol guests which are hydrogen-bonded to carboxylate oxygens of the framework. The pyridyl rings of the framework alternate between `open' and `closed' positions along the channels resulting in large variation in the channel cross-sectional area from ca. 1.4 by 2.3 at the narrowest point to 4.9 by 5.3 at the widest. Despite the very small windows, the ethanol guests (of van der Waals diameter ca. 4.2-6.1 Angstrom) may be reversibly desorbed and sorbed into the structure quantitatively, as shown by in situ variable-temperture IR spectroscopy and XRPD. The single-crystal structure of the desolvated form [Co(INA)(2)]2 shows that there is no change in the overall connectivity on desolvation, but the rotational positions of the pyridine rings are altered. This suggests that pyridyl rotation may occur to allow guests to pass in and out. When the synthesis was conducted in 1-propanol solvent [Co(INA)(2)].0.5Pr(n)OH.H2O 3, was obtained, and a single-crystal X-ray structure revealed the same overall connectivity as in 1 but with pyridine rings disordered over closed and open positions. There was no evidence of included guests from X-ray crystallography, suggesting that they are also highly disordered. Variable-temperature XRPD performed on bulk samples showed peaks which were unsymmetrical and exhibited shoulders, suggesting that for each pattern obtained the material actually consisted of several closely-related phases. The movements of the peaks during desolvation showed the presence of intermediate phases before the final desolvated product was formed. The peak positions of the intermediate phases matched more closely with the calculated pattern for 3 than with 1 or 2, suggesting that they may have disordered structures similar to 3. The results also suggest that the intermediate phase represents an initial increase in volume before a larger decrease in volume occurs to give the final desolvated material.
Resumo:
The chemisorption and reactivity of SO2 on Pt{111} have been studied by HREELS, XPS, NEXAFS and temperature-programmed desorption. At 160 K SO2 adsorbs intact at high coverages, with eta(2) S-O coordination to the surface. On annealing to 270 K, NEXAFS indicates the SO2 molecular plane essentially perpendicular to the surface. Preadsorbed O-a reacts with SO2 to yield adsorbed SO4, identified as the key surface species responsible for SO2-promoted catalytic alkane oxidation. Coadsorbed CO or propene efficiently reduce SO2 overlayers to deposit S-a, and the implications of this for catalytic systems are discussed.