153 resultados para Weak star convergence
Resumo:
Star formation often occurs within or nearby stellar clusters. Irradiation by nearby massive stars can photoevaporate protoplanetary disks around young stars (so-called proplyds) which raises questions regarding the ability of planet formation to take place in these environments. We investigate the two-dimensional physical and chemical structure of a protoplanetary disk surrounding a low-mass (T Tauri) star which is irradiated by a nearby massive O-type star to determine the survivability and observability of molecules in proplyds. Compared with an isolated star-disk system, the gas temperature ranges from a factor of a few (in the disk midplane) to around two orders of magnitude (in the disk surface) higher in the irradiated disk. Although the UV flux in the outer disk, in particular, is several orders of magnitude higher, the surface density of the disk is sufficient for effective shielding of the disk midplane so that the disk remains predominantly molecular in nature. We also find that non-volatile molecules, such as HCN and H2O, are able to freeze out onto dust grains in the disk midplane so that the formation of icy planetesimals, e.g., comets, may also be possible in proplyds. We have calculated the molecular line emission from the disk assuming LTE and determined that multiple transitions of atomic carbon, CO (and isotopologues, 13CO and C18O), HCO+, CN, and HCN may be observable with ALMA, allowing characterization of the gas column density, temperature, and optical depth in proplyds at the distance of Orion (˜400 pc).
Resumo:
We report observations of the dwarf star e Eri (K2V) made with the Space Telescope Imaging Spectrograph (STIS) on the Hubble Space Telescope. The high sensitivity of the STIS instrument has allowed us to detect the magnetic dipole transitions of Fe XII at 1242.00 and 1349 38 Å for the first time in a star other than the Sun. The width of the stronger line at 1242.00 Å has also been measured; such measurements are not possible for the permitted lines of Fe XII in the extreme-ultraviolet. To within the accuracy of the measurements the N v and the Fe XII lines occur at their rest wavelengths. Electron densities and linewidths have been measured from other transition region lines. Together, these can be used to investigate the non-thermal energy flux in the lower and upper transition regions, which is useful in constraining possible heating processes. The Fe XII lines are also present in archival STIS spectra of other G/K-type dwarfs.
Resumo:
Thermonuclear explosions may arise in binary star systems in which a carbon-oxygen (CO) white dwarf (WD) accretes helium-rich material from a companion star. If the accretion rate allows a sufficiently large mass of helium to accumulate prior to ignition of nuclear burning, the helium surface layer may detonate, giving rise to an astrophysical transient. Detonation of the accreted helium layer generates shock waves that propagate into the underlying CO WD. This might directly ignite a detonation of the CO WD at its surface (an edge-lit secondary detonation) or compress the core of the WD sufficiently to trigger a CO detonation near the centre. If either of these ignition mechanisms works, the two detonations (helium and CO) can then release sufficient energy to completely unbind the WD. These 'double-detonation' scenarios for thermonuclear explosion of WDs have previously been investigated as a potential channel for the production of Type Ia supernovae from WDs of ~ 1 M . Here we extend our 2D studies of the double-detonation model to significantly less massive CO WDs, the explosion of which could produce fainter, more rapidly evolving transients. We investigate the feasibility of triggering a secondary core detonation by shock convergence in low-mass CO WDs and the observable consequences of such a detonation. Our results suggest that core detonation is probable, even for the lowest CO core masses that are likely to be realized in nature. To quantify the observable signatures of core detonation, we compute spectra and light curves for models in which either an edge-lit or compression-triggered CO detonation is assumed to occur. We compare these to synthetic observables for models in which no CO detonation was allowed to occur. If significant shock compression of the CO WD occurs prior to detonation, explosion of the CO WD can produce a sufficiently large mass of radioactive iron-group nuclei to significantly affect the light curves. In particular, this can lead to relatively slow post-maximum decline. If the secondary detonation is edge-lit, however, the CO WD explosion primarily yields intermediate-mass elements that affect the observables more subtly. In this case, near-infrared observations and detailed spectroscopic analysis would be needed to determine whether a core detonation occurred. We comment on the implications of our results for understanding peculiar astrophysical transients including SN 2002bj, SN 2010X and SN 2005E. © 2012 The Authors Monthly Notices of the Royal Astronomical Society © 2012 RAS.
Resumo:
We report the magnetic and electrical characteristics of polycrystalline FeTiO3 synthesized at high pressure that is isostructural with acentric LiNbO3 (LBO). Piezoresponse force microscopy, optical second harmonic generation, and magnetometry demonstrate ferroelectricity at and below room temperature and weak ferromagnetism below ~120??K. These results validate symmetry-based criteria and first-principles calculations of the coexistence of ferroelectricity and weak ferromagnetism in a series of transition metal titanates crystallizing in the LBO structure.
Resumo:
Community structure depends on both deterministic and stochastic processes. However, patterns of community dissimilarity (e.g. difference in species composition) are difficult to interpret in terms of the relative roles of these processes. Local communities can be more dissimilar (divergence) than, less dissimilar (convergence) than, or as dissimilar as a hypothetical control based on either null or neutral models. However, several mechanisms may result in the same pattern, or act concurrently to generate a pattern, and much research has recently been focusing on unravelling these mechanisms and their relative contributions. Using a simulation approach, we addressed the effect of a complex but realistic spatial structure in the distribution of the niche axis and we analysed patterns of species co-occurrence and beta diversity as measured by dissimilarity indices (e.g. Jaccard index) using either expectations under a null model or neutral dynamics (i.e., based on switching off the niche effect). The strength of niche processes, dispersal, and environmental noise strongly interacted so that niche-driven dynamics may result in local communities that either diverge or converge depending on the combination of these factors. Thus, a fundamental result is that, in real systems, interacting processes of community assembly can be disentangled only by measuring traits such as niche breadth and dispersal. The ability to detect the signal of the niche was also dependent on the spatial resolution of the sampling strategy, which must account for the multiple scale spatial patterns in the niche axis. Notably, some of the patterns we observed correspond to patterns of community dissimilarities previously observed in the field and suggest mechanistic explanations for them or the data required to solve them. Our framework offers a synthesis of the patterns of community dissimilarity produced by the interaction of deterministic and stochastic determinants of community assembly in a spatially explicit and complex context.
Resumo:
In spite of the controversy that they have generated, neutral models provide ecologists with powerful tools for creating dynamic predictions about beta-diversity in ecological communities. Ecologists can achieve an understanding of the assembly rules operating in nature by noting when and how these predictions are met or not met. This is particularly valuable for those groups of organisms that are challenging to study under natural conditions (e.g., bacteria and fungi). Here, we focused on arbuscular mycorrhizal fungal (AMF) communities and performed an extensive literature search that allowed us to synthesize the information in 19 data sets with the minimal requisites for creating a null hypothesis in terms of community dissimilarity expected under neutral dynamics. In order to achieve this task, we calculated the first estimates of neutral parameters for several AMF communities from different ecosystems. Communities were shown either to be consistent with neutrality or to diverge or converge with respect to the levels of compositional dissimilarity expected under neutrality. These data support the hypothesis that divergence occurs in systems where the effect of limited dispersal is overwhelmed by anthropogenic disturbance or extreme biological and environmental heterogeneity, whereas communities converge when systems have the potential for niche divergence within a relatively homogeneous set of environmental conditions. Regarding the study cases that were consistent with neutrality, the sampling designs employed may have covered relatively homogeneous environments in which the effects of dispersal limitation overwhelmed minor differences among AMF taxa that would lead to environmental filtering. Using neutral models we showed for the first time for a soil microbial group the conditions under which different assembly processes may determine different patterns of beta-diversity. Our synthesis is an important step showing how the application of general ecological theories to a model microbial taxon has the potential to shed light on the assembly and ecological dynamics of communities.
Resumo:
In the natural world, camouflage is habitually deployed by 'vulnerable' creatures to deceive predators. Such protective strategies have been culturally, socially and technologically translated into human societies, whereby camouflage has been used to mask intentions, actions, feelings and valuable objects or spaces. Through the material presence of such techniques, everyday spaces can become inscribed as places of sanctuary. Focusing on British civil camouflage work of the 1930s and 1940s, this paper explores the historical, cultural and political connotations of camouflage and how the attainment of invisibility, as a 'weapon of the weak', can both physically and affectively protect urban populations. © 2012 Copyright Taylor and Francis Group, LLC.
Resumo:
A set of 138 "mesostics" from Ciaran Carson's novel "The Star Factory" poems derived from the chance determination procedure devised by John Cage and set out in the score of his "Roaratorio: An Irish Circus on Finnegan's Wake," a musical realisation of James Joyce's novel 'Finnegan's Wake." The publication forms part of a portfolio on the project "Owenvarragh: A belfast Circus on The Star Factory", published in the special John Cage issue of this journal.
Resumo:
Mixtures of two cleavable dimethacrylate crosslinkers, the hydrolyzable di(methacryloyloxy-1-ethoxy)methane (DMOEM) and the thermolyzable 1,1-ethylene-diol dimethacrylate (EDDMA), were used for the preparation of neat crosslinker polymer networks, randomly crosslinked polymer networks of methyl methacrylate (MMA), and star polymers of MMA, using group transfer polymerization in tetrahydrofuran (THF). All star polymers and randomly crosslinked polymer networks containing mixtures of the hydrolyzable DMOEM and the thermolyzable EDDMA crosslinkers gave THF-soluble final products when subjected to sequential thermolysis and hydrolysis, in this order. When applying sequential hydrolysis and thermolysis, only the star polymers with an EDDMA crosslinker content equal to or higher than 50% gave THF-soluble final products.
Resumo:
A hydrolyzable model network comprising interconnected star polymers was prepared by the sequential group transfer polymerization of methyl methacrylate and the acid-labile diacetal-based dimethacrylate crosslinker bis[(2-methacryloyloxy)ethoxymethyl] ether. in contrast to other polymer networks previously synthesized by our group, all the branching points of this polymer network were found to hydrolyze under mildly acidic conditions, giving a linear copolymer with the theoretically expected molecular weight and composition. The ease of hydrolysis of this polymer network renders it a good candidate for use in the biomedical field. The characterization of the synthesized network, its linear and star polymer precursors and the hydrolysis products of the network and its precursors, by a variety of techniques, established the successful synthesis and hydrolysis of this well-defined polymer nanostructure.
Resumo:
A compact, cleavable acylal dimethacrylate cross-linker, 1,1-ethylenediol dimethacrylate (EDDMA), was synthesized from the anhydrous iron(III) chloride-catalyzed reaction between methacrylic anhydride and acetaldehyde. The ability of EDDMA to act as cross-linker was demonstrated by using it for the preparation of one neat cross-linker network, four star polymers of methyl methacrylate (MMA), and four randomly cross-linked MMA polymer networks using group transfer polymerization (GTP). For comparison, the corresponding polymer structures based on the commercially available ethylene glycol dimethacrylate (EGDMA) cross-linker (isomer of EDDMA) were also prepared via GTR The number of arms of the EDDMA-based star polymers was lower than that of the corresponding EGDMA polymers, whereas the degrees of swelling in tetrahydrofuran of the EDDMA-based MMA networks were higher than those of their EGDMA-based counterparts. Although none of the EDDMA-containing polymers could be cleanly hydrolyzed under basic or acidic conditions, they could be thermolyzed at 200 degrees C within 1 day giving lower molecular weight products.
Resumo:
Six amphiphilic star copolymers comprising hydrophilic units of 2-(dimethylamino)ethyl methacrylate (DMAEMA) and hydrophobic units of methyl methacrylate (MMA) were prepared by the sequential group transfer polymerization (GTP) of the two comonomers and ethylene glycol dimethacrylate (EGDMA) cross-linker. Four star-block copolymers of different compositions, one miktoarm star, and one statistical copolymer star were synthesized. The molecular weights (MWs) and MW distributions of all the star copolymers and their linear homopolymer and copolymer precursors were characterized by gel permeation chromatography (GPC), while the compositions of the stars were determined by proton nuclear magnetic resonance (H-1 NMR) spectroscopy. Tetrahydrofuran (THF) solutions of all the star copolymers were characterized by static light scattering to determine the absolute weight-average MW ((M) over bar (w)) and the number of arms of the stars. The R, of the stars ranged between 359,000 and 565,000 g mol(-1), while their number of arms ranged between 39 and 120. The star copolymers were soluble in acidic water at pH 4 giving transparent or slightly opaque solutions, with the exception of the very hydrophobic DMAEMA(10)-b-MMA(30)-star, which gave a very opaque solution. Only the random copolymer star was completely dispersed in neutral water, giving a very opaque solution. The effective pKs of the copolymer stars were determined by hydrogen ion titration and were found to be in the range 6.5-7.6. The pHs of precipitation of the star copolymer solutions/dispersions were found to be between 8.8-10.1, except for the most hydrophobic DMA-EMA(10)-b-MMA(30)-Star, which gave a very opaque solution over the whole pH range. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
A hydrolyzable dimethacrylate cross-linker, 2-methyl-2,4-pentanediol dimethacrylate (MPDMA), was synhesized by the reaction of 2-methyl-2,4-pentanediol and methacryloyl chloride in the presence of triethylamine. This cross-linker was used to prepare a neat cross-linker network and three cross-linked star polymer model networks (CSPMNs) of methyl methacrylate (MMA), as well as star-shaped polymers of MMA, by group transfer polymerization (GTP). Gel permeation chromatography (GPC) in tetrahydrofuran (THF) confirmed the narrow molecular weight distributions (MWDs) of the linear polymer precursors, and demonstrated the increase in molecular weight (MW) on each successive addition of cross-linker or monomer. Characterization of the star polymers by static light scattering (SLS) in THF showed that star polymers with MPDMA cores bear a relatively small number of arms, between 7 and 35. All star polymers and polymer networks containing the MPDMA cross-linker were hydrolyzed at room temperature in neat trifluoroacetic acid to yield lower-MW products.