249 resultados para Vascular segmentation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIMS/HYPOTHESIS: Atherosclerosis, which occurs prematurely in individuals with diabetes, incorporates vascular smooth muscle cell (VSMC) chemotaxis. Glucose, through protein kinase C-beta(II) signalling, increases chemotaxis to low concentrations of platelet-derived growth factor (PDGF)-BB. In VSMC, a biphasic response in PDGF-beta receptor (PDGF-betaR) level occurs as PDGF-BB concentrations increase. The purpose of this study was to determine whether increased concentrations of PDGF-BB and raised glucose level had a modulatory effect on the mitogen-activated protein kinase/extracellular-regulated protein kinase pathway, control of PDGF-betaR level and chemotaxis.

METHODS: Cultured aortic VSMC, exposed to normal glucose (NG) (5 mmol/l) or high glucose (HG) (25 mmol/l) in the presence of PDGF-BB, were assessed for migration (chemotaxis chamber) or else extracted and immunoblotted.

RESULTS: At concentrations of PDGF-BB <540 pmol/l, HG caused an increase in the level of PDGF-betaR in VSMC (immunoblotting) versus NG, an effect that was abrogated by inhibition of aldose reductase or protein kinase C-beta(II). At higher concentrations of PDGF-BB (>540 pmol/l) in HG, receptor level was reduced but in the presence of aldose reductase or protein kinase C-beta(II) inhibitors the receptor levels increased. It is known that phosphatases may be activated at high concentrations of growth factors. At high concentrations of PDGF-BB, the protein phosphatase (PP)2A inhibitor, endothall, caused an increase in PDGF-betaR levels and a loss of biphasicity in receptor levels in HG. At higher concentrations of PDGF-BB in HG, the chemoattractant effect of PDGF-BB was lost (chemotaxis chamber). Under these conditions inhibition of PP2A was associated with a restoration of chemotaxis to high concentrations of PDGF-BB.

CONCLUSION/INTERPRETATION: The biphasic response in PDGF-betaR level and in chemotaxis to PDGF-BB in HG is due to PP2A activation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Responses evoked in muscle sympathetic nerve activity (MSNA) by systemic hypoxia have received relatively little attention. Moreover, MSNA is generally identified from firing characteristics in fibres supplying whole limbs: their actual destination is not determined. We aimed to address these limitations by using a novel preparation of spinotrapezius muscle in anaesthetised rats. By using focal recording electrodes, multi-unit and discriminated single unit activity were recorded from the surface of arterial vessels. This had cardiac- and respiratory-related activities expected of MSNA, and was increased by baroreceptor unloading, decreased by baroreceptor stimulation and abolished by autonomic ganglion blockade. Progressive, graded hypoxia (breathing sequentially 12, 10, 8% O2 for 2 min each) evoked graded increases in MSNA. In single units, mean firing frequency increased from 0.2 ± 0.04 in 21% O2 to 0.62 ± 0.14 Hz in 8% O2, while instantaneous frequencies ranged from 0.04–6 Hz in 21% O2 to 0.09–20 Hz in 8% O2. Concomitantly, arterial pressure (ABP), fell and heart rate (HR) and respiratory frequency (RF) increased progressively, while spinotrapezius vascular resistance (SVR) decreased (Spinotrapezius blood flow/ABP), indicating muscle vasodilatation. During 8% O2 for 10 min, the falls in ABP and SVR were maintained, but RF, HR and MSNA waned towards baselines from the second to the tenth minute. Thus, we directly show that MSNA increases during systemic hypoxia to an extent that is mainly determined by the increases in peripheral chemoreceptor stimulation and respiratory drive, but its vasoconstrictor effects on muscle vasculature are largely blunted by local dilator influences, despite high instantaneous frequencies in single fibres.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel image segmentation method based on a constraint satisfaction neural network (CSNN) is presented. The new method uses CSNN-based relaxation but with a modified scanning scheme of the image. The pixels are visited with more distant intervals and wider neighborhoods in the first level of the algorithm. The intervals between pixels and their neighborhoods are reduced in the following stages of the algorithm. This method contributes to the formation of more regular segments rapidly and consistently. A cluster validity index to determine the number of segments is also added to complete the proposed method into a fully automatic unsupervised segmentation scheme. The results are compared quantitatively by means of a novel segmentation evaluation criterion. The results are promising.