196 resultados para Ultraviolet spectra.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fibroblast activation protein-a (FAP-a) promotes tumor growth and cell invasiveness through extracellular matrix degradation. How ultraviolet radiation (UVR), the major risk factor for malignant melanoma, influences the expression of FAP-a is unknown. We examined the effect of UVR on FAP-a expression in melanocytes, keratinocytes and fibroblasts from the skin and in melanoma cells. UVR induces upregulation of FAP-a in fibroblasts, melanocytes and primary melanoma cells (PM) whereas keratinocytes and metastatic melanoma cells remained FAP-a negative. UVA and UVB stimulated FAP-a-driven migration and invasion in fibroblasts, melanocytes and PM. In co-culture systems UVR of melanocytes, PM and cells from regional metastases upregulated FAP-a in fibroblasts but only supernatants from non-irradiated PM were able to induce FAP-a in fibroblasts. Further, UV-radiated melanocytes and PM significantly increased FAP-a expression in fibroblasts through secretory crosstalk via Wnt5a, PDGF-BB and TGF-ß1. Moreover, UV radiated melanocytes and PM increased collagen I invasion and migration of fibroblasts. The FAP-a/DPPIV inhibitor Gly-ProP(OPh)2 significantly decreased this response implicating FAP-a/DPPIV as an important protein complex in cell migration and invasion. These experiments suggest a functional association between UVR and FAP-a expression in fibroblasts, melanocytes and melanoma cells implicating that UVR of malignant melanoma converts fibroblasts into FAP-a expressing and ECM degrading fibroblasts thus facilitating invasion and migration. The secretory crosstalk between melanoma and tumor surrounding fibroblasts is mediated via PDGF-BB, TGF-ß1 and Wnt5a and these factors should be evaluated as targets to reduce FAP-a activity and prevent early melanoma dissemination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nebular spectra of supernovae (SNe) offer an unimpeded view of the inner region of the ejecta, where most nucleosynthesis takes place. Optical spectra cover most, but not all, of the emitting elements and therefore offer only a partial view of the products of the explosion. Simultaneous optical-infrared spectra, on the other hand, contain emission lines of all important elements, from C and O through to the intermediate mass elements (IME) Mg, Si, S, Ca and to Fe and Ni. In particular, Si and S are best seen in the IR. The availability of IR data makes it possible to explore in greater detail the results of the explosion. SN 2007gr is the first Type Ic SN for which such data are available. Modelling the spectra with a non-local thermodynamic equilibrium (NLTE) code reveals that the inner ejecta contain similar to 1M(circle dot) of material within a velocity of approximate to 4500 km s(-1). The same mass of Ni-56 derived from the light-curve peak (0.076M(circle dot)) was used to power the spectrum, yielding consistent results. Oxygen is the dominant element, contributing similar to 0.8M(circle dot). The C/O ratio is

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present photometric and spectroscopic observations of a luminous Type IIP Supernova (SN) 2009kf discovered by the Pan-STARRS 1 (PS1) survey and also detected by the Galaxy Evolution Explorer. The SN shows a plateau in its optical and bolometric light curves, lasting approximately 70 days in the rest frame, with an absolute magnitude of M-V = - 18.4 mag. The P-Cygni profiles of hydrogen indicate expansion velocities of 9000 km s(-1) at 61 days after discovery which is extremely high for a Type IIP SN. SN 2009kf is also remarkably bright in the near-ultraviolet (NUV) and shows a slow evolution 10-20 days after optical discovery. The NUV and optical luminosity at these epochs can be modeled with a blackbody with a hot effective temperature (T similar to 16,000 K) and a large radius (R similar to 1 x 10(15) cm). The bright bolometric and NUV luminosity, the light curve peak and plateau duration, the high velocities, and temperatures suggest that 2009kf is a Type IIP SN powered by a larger than normal explosion energy. Recently discovered high-z SNe (0.7

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present mid-infrared (5.2-15.2 mu m) spectra of the Type Ia supernovae (SNe Ia) 2003hv and 2005df observed with the Spitzer Space Telescope. These are the first observed mid-infrared spectra of thermonuclear supernovae, and show strong emission from fine-structure lines of Ni, Co, S, and Ar. The detection of Ni emission in SN 2005df 135 days after the explosion provides direct observational evidence of high-density nuclear burning forming a significant amount of stable Ni in a SN Ia. The SN 2005df Ar lines also exhibit a two-pronged emission profile, implying that the Ar emission deviates significantly from spherical symmetry. The spectrum of SN 2003hv also shows signs of asymmetry, exhibiting blueshifted [Co (III)], which matches the blueshift of [Fe (II)] lines in nearly coeval near-infrared spectra. Finally, local thermodynamic equilibrium abundance estimates for the yield of radioactive Ni-56 give M-56Ni approximate to 0.5 M-circle dot, for SN 2003hv, but only M-56Ni approximate to 0.13-0.22 M-circle dot for the apparently subluminous SN 2005df, supporting the notion that the luminosity of SNe Ia is primarily a function of the radioactive 56Ni yield. The observed emission-line profiles in the SN 2005df spectrum indicate a chemically stratified ejecta structure, which matches the predictions of delayed detonation (DD) models, but is entirely incompatible with current three-dimensional deflagration models. Furthermore, the degree that this layering persists to the innermost regions of the supernova is difficult to explain even in a DD scenario, where the innermost ejecta are still the product of deflagration burning. Thus, while these results are roughly consistent with a delayed detonation, it is clear that a key piece of physics is still missing from our understanding of the earliest phases of SN Ia explosions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The proton NMR spectra of aryl n-propyl sulfides gave rise to what may appear to be first-order proton NMR spectra. Upon oxidation to the corresponding sulfone, the spectra changed appearance dramatically and were clearly second-order. A detailed analysis of these second-order spectra, in the sulfone series, provided vicinal coupling constants which indicated that these compounds had a moderate preference for the anti-conformer, reflecting the much greater size of the sulfone over the sulfide. It also emerged, from this study, that the criterion for observing large second-order effects in the proton NMR spectra of 1,2-disubstituted ethanes was that the difference in vicinal coupling constants must be large and the difference in geminal coupling constants must be small. n-Propyl triphenylphosphonium bromide and 2-trimethylsilylethanesulfonyl chloride, and derivatives thereof, also exhibited second-order spectra, again due to the bulky substituents. Since these spectra are second-order due to magnetic nonequivalence of the nuclei in question, not chemical shifts, the proton spectra are perpetually second-order and can never be rendered first-order by using higher field NMR spectrometers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanosecond time-resolved absorption (TA), resonance Raman (TR(3)), and infrared (TRIR) spectra are reported for several complexes [Ru(X)(R)(CO)(2)(alpha-diimine)] (X = Cl, Br, I; R = Me, Et; alpha-diimine = N,N'-diisopropyl-1,4-diaza-1,3-butadiene (iPr-DAB), pyridine-2-carbaldehyde-N-isopropylimine (iPr-PyCa), 2,2'-bipyridine (bpy)). This is the first instance in which the TA, TR(3), and TRIR techniques have been used to probe excited states in the same series of complexes. The TA spectra of the iodide complexes show a transient absorption between 550 and 700 nm, which does not depend on the solvent but shifts to lower energy in the order iPr-DAB > bpy > iPr-PyCa. This band is assigned to an intraligand transition. For the corresponding chloride and bromide complexes this band occurs at higher energy, most probably because of a change of character of the lowest excited state from XLCT to MLCT. The TRIR spectra show an increase in v(CO) (and k(CO)) on promotion to the excited state; however, the shifts Delta v(CO) show a decrease in the order Cl- > Br- > I-. The TR(3) spectra of the excited complexes [Ru(X)(R)(Co)(2)(iPr-DAB)] show v(s)(CN) of the iPr-DAB ligand 50-80 cm(-1) lower in frequency than for the complexes in their ground state. This frequency shift decreases in the order Cl- > Br- > I-, indicating a decrease of CT character of the lowest excited state in this order. However, going from X = Br to I, the effect on Delta v(CO) is much larger than the decrease of Delta v(s)(CN). This different effect on the CO- and CN-stretching frequencies is assigned to a gradual change in character of the lowest excited state from MLCT to XLCT when Cl- is replaced by Br- and I-. This result confirms a similar conclusion derived from previous resonance Raman and emission experiments on these complexes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The resonance Raman spectra of the ground state and the lowest excited tripler state of free-base tetraphenylporphyrin and six of its isotopomers have been obtained using two-color time-resolved techniques. Ground-state spectra were recorded using low-energy 447 nm probe laser pulses, and triplet-state spectra were probed, with similar pulses, 30 ns after high-energy excitation with 532 nm pump pulses. Polarization data on both the ground and triplet states are also reported. The resonance Raman spectrum of the triplet is very different from that of the ground state but the combination of extensive isotope substitution with polarization data allows bands in the ground state to be assigned and corresponding bands in the tripler state to be located. Isotope shifts of the same bands in the S-0 and T-1 states are similar, implying that the compositions of the vibrational modes do not change significantly on excitation. Two of the strongest bands in the T-1 spectra are associated with phenyl ring substituents; these are shifted less than 5 cm(-1) between the S-0 and T-1 states so that bonding in the phenyl substituents is barely affected by excitation to the T-1 state. The changes in position of the porphyrin ring bands are larger, but still only tens of cm(-1) or less, the main changes in the spectra being due to differences in relative band intensities in the two states. The relatively small shifts in the porphyrin ring band positions which are observed show that the excitation energy is not localized on a single small region of the molecule but is delocalized over the entire porphyrin skeleton. This picture of an excited species with high chemical reactivity, but with individual bonds only slightly perturbed from the ground state, is contrasted with molecules, such as benzophenone, where excitation causes a large perturbation in the bonding within a single functional group.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is concerned with the chemical evolution of large molecules in interstellar clouds. We consider the chemistry and ionisation balance of large polycyclic aromatic hydrocarbon (PAH) type molecules in diffuse clouds and show that certain PAH molecules can be doubly ionised by the interstellar ultraviolet radiation field. If recombination of the dications so produced with electrons is dissociative rather than radiative, then PAHs are rapidly destroyed. PAHs which can only be singly ionised have much smaller recombination energies and can be long lasting in these regions. This type of property may be very important in selecting the PAH species which can populate the general interstellar medium and account for certain of the diffuse bands observed in optical spectra. Destruction of PAH molecules via formation of dications may be responsible for the weakening of the diffuse bands observed in regions of high UV flux.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present optical spectra of 403 stars and quasi-stellar objects in order to obtain distance limits towards intermediate- and high-velocity clouds (IHVCs), including new Fibre-fed Extended Range Optical Spectrograph (FEROS) observations plus archival ELODIE, FEROS, High Resolution Echelle Spectrometer (HIRES) and Ultraviolet and Visual Echelle Spectrograph (UVES) data. The non-detection of Ca II K interstellar (IS) absorption at a velocity of −130 to −60 km s−1 towards HDE 248894 (d ∼ 3 kpc) and HDE 256725 (d ∼ 8 kpc) in data at signal-to-noise ratio (S/N) > 450 provides a new firm lower distance limit of 8 kpc for the anti-centre shell HVC. Similarly, the non-detection of Ca II K IS absorption towards HD 86248 at S/N ∼ 500 places a lower distance limit of 7.6 kpc for Complex EP, unsurprising since this feature is probably related to the Magellanic System. The lack of detection of Na I D at S/N = 35 towards Mrk 595 puts an improved upper limit for the Na I column density of log (NNaD <) 10.95 cm−2 towards this part of the Cohen Stream where Ca II was detected by Wakker et al. Absorption at ∼ −40 km s−1 is detected in Na I D towards the Galactic star PG 0039+049 at S/N = 75, placing a firm upper distance limit of 1 kpc for the intermediate-velocity cloud south (IVS), where a tentative detection had previously been obtained by Centurion et al. Ca ´ II K and Na I D absorption is detected at −53 km s−1 towards HD 93521, which confirms the upper distance limit of 2.4 kpc for part of the IV arch complex obtained using the International Ultraviolet Explorer (IUE) data by Danly. Towards HD 216411 in Complex H a non-detection in Na D towards gas with log(NH I) = 20.69 cm−2 puts a lower distance limit of 6.6 kpc towards this HVC complex. Additionally, Na I D absorption is detected at −43.7 km s−1 in the star HD 218915 at a distance of 5.0 kpc in gas in the same region of the sky as Complex H. Finally, the Na I/Ca II and Ca II/H I ratios of the current sample are found to lie in the range observed for previous studies of IHVCs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Observations of extreme ultraviolet (EUV) emission from an X-class solar flare that occurred on 2011 February 15 at 01: 44 UT are presented, obtained using the EUV Variability Experiment (EVE) on board the Solar Dynamics Observatory. The complete EVE spectral range covers the free-bound continua of H I (Lyman continuum), He I, and He II, with recombination edges at 91.2, 50.4, and 22.8 nm, respectively. By fitting the wavelength ranges blueward of each recombination edge with an exponential function, light curves of each of the integrated continua were generated over the course of the flare, as was emission from the free-free continuum (6.5-37 nm). The He II 30.4 nm and Ly alpha 121.6 nm lines, and soft X-ray (SXR; 0.1-0.8 nm) emission from GOES are also included for comparison. Each free-bound continuum was found to have a rapid rise phase at the flare onset similar to that seen in the 25-50 keV light curves from RHESSI, suggesting that they were formed by recombination with free electrons in the chromosphere. However, the free-free emission exhibited a slower rise phase seen also in the SXR emission from GOES, implying a predominantly coronal origin. By integrating over the entire flare the total energy emitted via each process was determined. We find that the flare energy in the EVE spectral range amounts to at most a few percent of the total flare energy, but EVE gives us a first comprehensive look at these diagnostically important continuum components.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the discovery of two ultraluminous supernovae (SNe) at z approximate to 0.9 with the Pan-STARRS1 Medium Deep Survey. These SNe, PS1-10ky and PS1-10awh, are among the most luminous SNe ever discovered, comparable to the unusual transients SN 2005ap and SCP 06F6. Like SN 2005ap and SCP 06F6, they show characteristic high luminosities (M-bol approximate to -22.5 mag), blue spectra with a few broad absorption lines, and no evidence for H or He. We have constructed a full multi-color light curve sensitive to the peak of the spectral energy distribution in the rest-frame ultraviolet, and we have obtained time series spectroscopy for these SNe. Given the similarities between the SNe, we combine their light curves to estimate a total radiated energy over the course of explosion of (0.9-1.4) x 10(51) erg. We find photospheric velocities of 12,000-19,000 km s(-1) with no evidence for deceleration measured across similar to 3 rest-frame weeks around light curve peak, consistent with the expansion of an optically thick massive shell of material. We show that, consistent with findings for other ultraluminous SNe in this class, radioactive decay is not sufficient to power PS1-10ky, and we discuss two plausible origins for these events: the initial spin-down of a newborn magnetar in a core-collapse SN, or SN shock breakout from the dense circumstellar wind surrounding a Wolf-Rayet star.