213 resultados para Theory of social movements
Resumo:
A theory of strongly interacting Fermi systems of a few particles is developed. At high excit at ion energies (a few times the single-parti cle level spacing) these systems are characterized by an extreme degree of complexity due to strong mixing of the shell-model-based many-part icle basis st at es by the residual two- body interaction. This regime can be described as many-body quantum chaos. Practically, it occurs when the excitation energy of the system is greater than a few single-particle level spacings near the Fermi energy. Physical examples of such systems are compound nuclei, heavy open shell atoms (e.g. rare earths) and multicharged ions, molecules, clusters and quantum dots in solids. The main quantity of the theory is the strength function which describes spreading of the eigenstates over many-part icle basis states (determinants) constructed using the shell-model orbital basis. A nonlinear equation for the strength function is derived, which enables one to describe the eigenstates without diagonalization of the Hamiltonian matrix. We show how to use this approach to calculate mean orbital occupation numbers and matrix elements between chaotic eigenstates and introduce typically statistical variable s such as t emperature in an isolated microscopic Fermi system of a few particles.
Resumo:
The control of social attention during early infancy was investigated in two studies. In both studies, an adult turned towards one of two targets within the infant's immediate visual field. We tested: (a) whether infants were able to follow the direction of the adult's head turn; and (b) whether following a head turn was accompanied by further gaze shifts between experimenter and target. In the first study, 1-month-olds did not demonstrate attention following at the group level. In addition, those infants who turned towards the same target remained fixed on it and did not shift attention again. In Study 2, we tested infants longitudinally at 2-4 months. At the group level, infants followed the adult's head turn at 3 and 4 months but not at 2 months. Those infants who turned towards the same target at 3 and 4 months also shifted gaze back and forth between experimenter and target. By 3 months, infants seem able to capitalize on the social environment to disengage and distribute attention more flexibly. The results support the claim that the control of social attention begins in early infancy, and are consistent with the hypothesis that following the attention of other people is dependent on the development of disengagement skills.
Resumo:
The nonlinear aspects of longitudinal motion of interacting point masses in a lattice are revisited, with emphasis on the paradigm of charged dust grains in a dusty plasma (DP) crystal. Different types of localized excitations, predicted by nonlinear wave theories, are reviewed and conditions for their occurrence (and characteristics) in DP crystals are discussed. Making use of a general formulation, allowing for an arbitrary (e.g. the Debye electrostatic or else) analytic potential form phi(r) and arbitrarily long site-to-site range of interactions, it is shown that dust-crystals support nonlinear kink-shaped localized excitations propagating at velocities above the characteristic DP lattice sound speed v(0). Both compressive and rarefactive kink-type excitations are predicted, depending on the physical parameter values, which represent pulse- (shock-)like coherent structures for the dust grain relative displacement. Furthermore, the existence of breather-type localized oscillations, envelope-modulated wavepackets and shocks is established. The relation to previous results on atomic chains as well as to experimental results on strongly-coupled dust layers in gas discharge plasmas is discussed.
Resumo:
An analytical model based on Lagrangian variables is presented for the description of ion-acoustic waves propagating in an unmagnetized, collisionless, three-component plasma composed of inertial positive ions and two thermalized electron populations, characterized by different temperatures. The wave's amplitude is shown to be modulationally unstable. Different types of localized envelope electrostatic excitations are shown to exist, and their forms are analytically and numerically investigated in terms of the plasma dispersion and nonlinearity laws. These results are in qualitative agreement with satellite observations in the magnetosphere. (C) 2004 American Institute of Physics.
Resumo:
A comprehensive nonlinear model is put forward for coupled longitudinal to transverse displacements in a horizontal dust mono-layer, levitated under the combined influence of gravity and an electric and/or magnetic sheath field. A set of coupled nonlinear evolution equations are obtained in a discrete description, and a pair of coupled (Boussinesq-like) PDEs are obtained in the continuum approximation. Finally, the amplitude modulation of the coupled modes is discussed, pointing out the importance of the coupling. All these results are generic, i.e. valid for any assumed form of the inter-grain interaction potential U and the sheath potential Phi.
Resumo:
Following ideas of Quillen we prove that the graded K-theory of a Z-multi-graded ring with support contained in a pointed cone is entirely determined by the K-theory of the sub-ring of elements of degree 0.
Resumo:
Suppose X is a projective toric scheme defined over a ring R and equipped with an ample line bundle L . We prove that its K-theory has a direct summand of the form K(R)(k+1) where k = 0 is minimal such that L?(-k-1) is not acyclic. Using a combinatorial description of quasi-coherent sheaves we interpret and prove this result for a ring R which is either commutative, or else left noetherian.