112 resultados para Testis biopsy


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Molecular techniques have a key role to play in laboratory and clinical haematology. Restriction enzymes allow nucleic acids to be reduced in size for subsequent analysis. In addition they allow selection of specific DNA or RNA sequences for cloning into bacterial plasmids. These plasmids are naturally occuring DNA molecules which reside in bacterial cells. They can be manipulated to act as vehicles or carriers for biologically and medically important genes, allowing the production of large amounts of cloned material for research purposes or to aid in the production of medically important recombinant molecules such as insulin. As acquired or inherited genetic changes are implicated in a wide range of haematological diseases, it is necessary to have highly specific and sensitive assays to detect these mutations. Most of these techniques rely on nucleic acid hybridisation, benefitting from the ability of DNA or RNA to bind tighly to complimentary bases in the nucleic acid structure. Production of artificial DNA molecules called probes permits nucleic acid hybridiation assays to be performed, using the techniques of southern blotting or dot blot analysis. In addition the base composition of any gene or region of DNA can be determined using DNA sequencing technology. The advent of the polymerase chain reaction (PCR) has revolutionised all aspects of medicine, but has particular relevance in haematology where easy access to biopsy material provides a wealth of material for analysis. PCR permits quick and reliable manipulation of sample material and its ability to be automated makes it an ideal tool for use in the haematology laboratory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Standard identification systems usually ensure that biopsy material is correctly associated with a given patient. Sometimes, as when a tumor is unexpectedly found, the provenance (proof of origin) of a tissue sample may be questioned; the tissue may have been mislabelled or contaminated with tissue from another patient. Techniques used to confirm tissue provenance include comparing either tissue markers of gender or ABO blood groups; however, these methods have weak confirmatory power. Recently, the use of DNA-based polymerase chain reaction (PCR) techniques has been reported. Paired, formalin-fixed, paraffin-embedded, 10 microns tissue sections were selected from 17 patients, 8 of whom had carcinoma, either by dividing a biopsy section, using sequential biopsies, or sequential biopsy and autopsy tissue. The resulting 36 samples were coded before analysis. In two additional cases, 1-mm fragments of tumor from one patient were included in the tissue block of benign tissue from another patient, the tumor fragments were identified on hematoxylin-and-eosin-stained sections, separately scraped off the glass slide, and analyzed. Tissue from two clinical cases, one of suspected mislabelling and one with a suspected carry-over of malignant tissue were also investigated. Short tandem repeat sequences (STR) or microsatellites, are 2-5 base pair repeats that vary in their repeat number between individuals. This variation (polymorphism) can be assessed using a PCR. A panel of markers of 3 STRs; ACPP, INT 2, and CYP 19 (on chromosomes 3, 11, and 15, respectively) were used. DNA was isolated from the samples after xylene deparaffinization and proteinase digestion, and was then amplified in a radioactive PCR using primers selected to give a product size ranging from 136-178 bases. Amplified products were electrophoresed on denaturing polyacrylamide gels, dried, and autoradiographed. DNA segments were successfully extracted from all samples but one, which was fixed in Bouin's fluid. By comparing allele sizes from the panel, all tissue pairs (other than the Bouin's pair) were successfully matched, the 1-mm tumor fragments were correctly assigned, and the two clinical problems were solved. STRs are highly informative and robust markers, well suited to PCR of small portions of tissue sections, and are an effective method to confirm the provenance of benign and malignant biopsy and autopsy material.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report a case study of a female who received an allogeneic bone marrow transplantation (BMT) from a sex-mismatched related donor and who, after a twenty-year interval, developed an acute fulminant biopsy-proven demyelinating disorder of cerebral white matter which followed a remitting-relapsing chronic course. In situ hybridization studies using Y-chromosome-specific markers revealed Y-chromosome-positive mononuclear cells in biopsy samples of white matter. Magnetic resonance imaging (MRI) studies of the asymptomatic healthy male donor showed multiple white matter lesions. These observations suggest that donor lymphocytes were sensitized to central nervous system (CNS) antigens prior to or at the time of transplantation but remained dormant for 20 years before becoming activated to cause widespread demyelination.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A 12 amino acid sequence from the adenovirus 12 E1B protein is homologous at the protein level with a similar 12-mer derived from the wheat protein A-gliadin. It has been suggested that exposure to Ad 12 could sensitise individuals to gliadins with resultant gluten sensitive enteropathy. In this study, the polymerase chain reaction (PCR) was used to analyse duodenal biopsy tissue from patients with coeliac disease for the presence of Ad 12. The sensitivity of the assay system was at least 1 in 10(5) cells and specificity was confirmed both by probing with an internal oligonucleotide and by direct sequencing. Ad 12 sequences were detected in three of 17 patients with adult coeliac disease and in five of 16 adult controls with normal duodenal biopsies. Since exposure to the virus would be predicted to occur in infancy we also studied patients with childhood coeliac disease diagnosed at less than 1 year of age. Ad 12 was positive in three of 10 childhood coeliac patients and one of seven controls. In addition, we studied a cohort of patients who presented with a diarrhoeal illness and associated anti alpha gliadin antibodies in 1983. These patients had duodenal biopsies performed at this time. One of three patients with abnormal histology had detectable Ad 12 while two of 14 with normal findings were positive for Ad 12. Finally, the potential oncogenic nature of Ad 12 prompted examination of a group of patients with intestinal tumours. Ad 12 DNA was, however, in only two of 19 tumour samples tested. These data indicate that Ad 12 can be successfully detected using PCR on paraffin embedded tissue. Furthermore, Ad 12 was detected at a relatively high level in normal duodenum. The results do not, however, support the hypothesis that prior exposure to Ad 12 is implicated in the pathogenesis of coeliac disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Routine molecular diagnostics modalities are unable to confidently detect low frequency mutations (<5-15%) that may indicate response to targeted therapies. We confirm the presence of a low frequency NRAS mutation in a rectal cancer patient using massively parallel sequencing when previous Sanger sequencing results proved negative and Q-PCR testing inconclusive. There is increasing evidence that these low frequency mutations may confer resistance to anti-EGFR therapy. In view of negative/inconclusive Sanger sequencing and Q-PCR results for NRAS mutations in a KRAS wt rectal case, the diagnostic biopsy and 4 distinct subpopulations of cells in the resection specimen after conventional chemo/radiotherapy were massively parallel sequenced using the Ion Torrent PGM. DNA was derived from FFPE rectal cancer tissue and amplicons produced using the Cancer Hotspot Panel V2 and sequenced using semiconductor technology. NRAS mutations were observed at varying frequencies in the patient biopsy (12.2%) and all four subpopulations of cells in the resection with an average frequency of 7.3% (lowest 2.6%). The results of the NGS also provided the mutational status of 49 other genes that may have prognostic or predictive value, including KRAS and PIK3CA. NGS technology has been postulated in diagnostics because of its capability to generate results in large panels of clinically meaningful genes in a cost-effective manner. This case illustrates another potential advantage of this technology: its use for detecting low frequency mutations that may influence therapeutic decisions in cancer treatment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: RAS is mutated (RASMT) in ~55% of mCRC, and phase III studies have shown that patients harbouring RAS mutations do not benefit from anti-EGFR MoAbs. In addition, ~50% of RAS Wild Type (RASWT) will not benefit from the addition of an EGFR MoAb to standard chemotherapy. Hence, novel treatment strategies are urgently needed for RASMT and > 50% of RASWT mCRC patients. c-MET is overexpressed in ~50-60%, amplified in ~2-3% and mutated in ~3-5% of mCRC. Recent preclinical studies have shown that c-MET is an important mediator of resistance to MEK inhibitors (i) in RASMT mCRC, and that combined MEKi/METi resulted in synergistic reduction in tumour growth in RASMT xenograft models (1). A number of recent studies have highlighted the role of c-MET in mediating primary/secondary resistance to anti-EGFR MoAbs in mCRC, suggesting that patient with RASWT tumours with aberrant c-MET (RASWT/c-MET+) may benefit from anti-c-MET targeted therapies (2). These preclinical data supported the further clinical evaluation of combined MEKi/METi treatment in RASMT and RASWT CRC patients with aberrant c-MET signalling (overexpression, amplification or mutation; RASWT/c-MET+). Methods: MErCuRIC1 is a phase I combination study of METi crizotinib with MEKi PD-0325901. The dose escalation phase, utilizing a rolling six design, recruits 12-24 patients with advanced solid tumours and aims to assess safety/toxicity of combination, recommended phase II (RPII) dose, pharmacokinetics (PK) and pharmacodynamics (PD) (pERK1/2 in PBMC and tumour; soluble c-MET). In the dose expansion phase an additional 30-42 RASMT and RASWT/c-MET mCRC patients with biopsiable disease will be treated at the RPII dose to further evaluate safety, PK, PD and treatment response. In the dose expansion phase additional biopsy and blood samples will be obtained to define mechanisms of response/resistance to crizotinib/PD-0325901 therapy. Enrolment into the dose escalation phase began in December 2014 with cohort 1 still ongoing. EudraCT registry number: 2014-000463-40. (1) Van Schaeybroeck S et al. Cell Reports 2014;7(6):1940-55; (2) Bardelli A et al. Cancer Discov 2013;3(6):658-73. Clinical trial information: 2014-000463-40.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It has previously been reported that the a-defensins, found in the granules of polymorphonuclear leukocytes (neutrophils/ PMNs), are cytolytic for human tumour cells in vitro. Objective: To identify and quantify the a- defensins, HNP-1, HNP-2 and HNP-3 in healthy and tumour tissue from patients with oral squamous cell carcinoma using HPLC, mass spectrometry and amino acid sequencing. Methods: All patients (n=5) were diagnosed with oral squamous cell carcinoma of the tongue.Biopsy tissue from the site of the tumour (n=5) and a non-affected region of the tongue (n=5) was snap frozen and subsequently stored at -70 ºC until analysed. Peptides were extracted from the 10 tissue biopsies using acidified ethanol. Peptide extracts were separated by reverse-phase HPLC . All tumour and control tissue samples were individually analysed under identical conditions with a flow rate of l ml/min, ambient column temperature and absorbance detection at 214 and 280 nm. Fractions (1ml) were collected automatically. HPLC fractions were analysed by MALDI-MS using a linear time-of-flight Voyager DE-mass spectrometer (PerSeptive Biosystems, UK). Using this system the detection limit was 10 fmol. Peptides with molecular masses corresponding to those reported for the a-defensins were deemed of interest and were further subject to complete structural analysis by automated Edman degradation using an Applied Biosystems 491 Procise microsequencer. Results: MALDI-MS revealed a triad of peptides of molecular masses 3442 Da, 3371 Da and 3486 Da in both healthy and tumour tissue. Full length sequence data were obtained for the three a-defensins, unequivocally identifying their presence in both tumour and healthy tissue. Analysis of the MALDI-MS and sequence data indicated that the a-defensins were overexpressed (up to 12 fold) in tumour tissue. Conclusion: This study demonstrates the feasibility of screening tumour tissue for novel peptides/proteins using HPLC and MALDI-MS.The role of a-defensins in oral squamous cell carcinoma of the tongue requires further investigation.