135 resultados para Self-Shrinking P-ADIC Cryptographic Generator


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Robust, bilayer heterojunction photodiodes of TiO2-WO3 were prepared successfully by a simple, low-cost powder pressing technique followed by heat-treatment. Exclusive photoirradiation of the TiO2 side of the photodiode resulted in a rapid colour change (dark blue) on the WO3 surface as a result of reduction of W6+ to W5+ (confirmed by X-ray photoelectron spectroscopy). This colour was long lived and shown to be stable in a dry environment in air for several hours. A similar photoirradiation experiment in the presence of a mask showed that charge transfer across the heterojunction occurred approximately normal to the TiO2 surface, with little smearing out of the mask image. As a result of the highly efficient vectorial charge separation, the photodiodes showed a tremendous increase in photocatalytic activity for the degradation of stearic acid, compared to wafers of the respective individual materials when tested separately.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of supramolecular aggregates were prepared using a poly(propylene oxide) poly(ethylene oxide) poly(propylene oxide) (PPO-PEO-PPO) block copolymer and beta- or alpha-cyclodextrins (CD). The combination of beta-CD and the copolymer yields inclusion complexes (IC) with polypseudorotaxane structures. These are formed by complexation of the PPO blocks with beta-CD molecules producing a powder precipitate with a certain crystallinity degree that can be evaluated by X-ray diffraction (XRD). In contrast, when combining alpha-CD with the block copolymer, the observed effect is an increase in the viscosity of the mixtures, yielding fluid gels. Two cooperative effects come into play: the complexation of PEO blocks with alpha-CD and the hydrophobic interactions between PPO blocks in aqueous media. These two combined interactions lead to the formation of a macromoleculaf network. The resulting fluid gels were characterized using different techniques such as differential scanning calorimetry (DSC), viscometry, and XRD measurements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Medical Research Council (MRC) guidelines recommend applying theory within complex interventions to explain how behaviour change occurs. Guidelines endorse self-management of chronic low back pain (CLBP) and osteoarthritis (OA), but evidence for its effectiveness is weak. Objective: This literature review aimed to determine the use of behaviour change theory and techniques within randomised controlled trials of group-based self-management programmes for chronic musculoskeletal pain, specifically CLBP and OA. Methods: A two-phase search strategy of electronic databases was used to identify systematic reviews and studies relevant to this area. Articles were coded for their use of behaviour change theory, and the number of behaviour change techniques (BCTs) was identified using a 93-item taxonomy, Taxonomy (v1). Results: 25 articles of 22 studies met the inclusion criteria, of which only three reported having based their intervention on theory, and all used Social Cognitive Theory. A total of 33 BCTs were coded across all articles with the most commonly identified techniques being '. instruction on how to perform the behaviour', '. demonstration of the behaviour', '. behavioural practice', '. credible source', '. graded tasks' and '. body changes'. Conclusion: Results demonstrate that theoretically driven research within group based self-management programmes for chronic musculoskeletal pain is lacking, or is poorly reported. Future research that follows recommended guidelines regarding the use of theory in study design and reporting is warranted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The majority of bacteria in the natural environment live within the confines of a biofilm. The Gram-positive bacterium Bacillus subtilis forms biofilms that exhibit a characteristic wrinkled morphology and a highly hydrophobic surface. A critical component in generating these properties is the protein BslA, which forms a coat across the surface of the sessile community. We recently reported the structure of BslA, and noted the presence of a large surface-exposed hydrophobic patch. Such surface patches are also observed in the class of surface-active proteins known as hydrophobins, and are thought to mediate their interfacial activity. However, although functionally related to the hydrophobins, BslA shares no sequence nor structural similarity, and here we show that the mechanism of action is also distinct. Specifically, our results suggest that the amino acids making up the large, surface-exposed hydrophobic cap in the crystal structure are shielded in aqueous solution by adopting a random coil conformation, enabling the protein to be soluble and monomeric. At an interface, these cap residues refold, inserting the hydrophobic side chains into the air or oil phase and forming a three-stranded β-sheet. This form then self-assembles into a well-ordered 2D rectangular lattice that stabilizes the interface. By replacing a hydrophobic leucine in the center of the cap with a positively charged lysine, we changed the energetics of adsorption and disrupted the formation of the 2D lattice. This limited structural metamorphosis represents a previously unidentified environmentally responsive mechanism for interfacial stabilization by proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Formation of Bacillus subtilis biofilms, consisting of cells encapsulated within an extracellular matrix of exopolysaccharide and protein, requires the polyamine spermidine. A recent study reported that (1) related polyamine norspermidine is synthesized by B. subtilis using the equivalent of the Vibrio cholerae biosynthetic pathway, (2) exogenous norspermidine at 25 μM prevents B. subtilis biofilm formation, (3) endogenous norspermidine is present in biofilms at 50-80 μM, and (4) norspermidine prevents biofilm formation by condensing biofilm exopolysaccharide. In contrast, we find that, at concentrations up to 200 μM, exogenous norspermidine promotes biofilm formation. We find that norspermidine is absent in wild-type B. subtilis biofilms at all stages, and higher concentrations of exogenous norspermidine eventually inhibit planktonic growth and biofilm formation in an exopolysaccharide-independent manner. Moreover, orthologs of the V. cholerae norspermidine biosynthetic pathway are absent from B. subtilis, confirming that norspermidine is not physiologically relevant to biofilm function in this species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biofilms represent the predominant mode of microbial growth in the natural environment. Bacillus subtilis is a ubiquitous Gram-positive soil bacterium that functions as an effective plant growth-promoting agent. The biofilm matrix is composed of an exopolysaccharide and an amyloid fiber-forming protein, TasA, and assembles with the aid of a small secreted protein, BslA. Here we show that natively synthesized and secreted BslA forms surface layers around the biofilm. Biophysical analysis demonstrates that BslA can self-assemble at interfaces, forming an elastic film. Molecular function is revealed from analysis of the crystal structure of BslA, which consists of an Ig-type fold with the addition of an unusual, extremely hydrophobic "cap" region. A combination of in vivo biofilm formation and in vitro biophysical analysis demonstrates that the central hydrophobic residues of the cap are essential to allow a hydrophobic, nonwetting biofilm to form as they control the surface activity of the BslA protein. The hydrophobic cap exhibits physiochemical properties remarkably similar to the hydrophobic surface found in fungal hydrophobins; thus, BslA is a structurally defined bacterial hydrophobin. We suggest that biofilms formed by other species of bacteria may have evolved similar mechanisms to provide protection to the resident bacterial community.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrical conductivity of the supercooled ionic liquid [C8MIM][NTf2], determined as a function of temperature and pressure, highlights strong differences in its ionic transport behavior between low and high temperature regions. To date, the crossover effect which is very well known for low molecular van der Waals liquids has been rarely described for classical ionic liquids. This finding highlights that the thermal fluctuations could be dominant mechanisms driving the dramatic slowing down of ion motions near Tg. An alternative way to analyze separately low and high temperature dc-conductivity data using a density scaling approach was then proposed. Based on which a common value of the scaling exponent [gamma] = 2.4 was obtained, indicating that the applied density scaling is insensitive to the crossover effect. By comparing the scaling exponent [gamma] reported herein along with literature data for other ionic liquids, it appears that [gamma] decreases by increasing the alkyl chain length on the 1-alkyl-3-methylimidazolium-based ionic liquids. This observation may be related to changes in the interaction between ions in solution driven by an increase in the van der Waals type interaction by increasing the alkyl chain length on the cation. This effect may be related to changes in the ionic liquid nanostructural organization with the alkyl chain length on the cation as previously reported in the literature based on molecular dynamic simulations. In other words, the calculated scaling exponent [gamma] may be then used as a key parameter to probe the interaction and/or self-organizational changes in solution with respect to the ionic liquid structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: Many cancer patients experience sleeping difficulties which can persist several years after the completion of cancer treatment. Previous research suggests that acupuncture, and variants of acupuncture (acupressure, auricular therapy) may be effective treatment options for sleep disturbance. However, current evidence is limited for cancer patients.

Methods: Feasibility study with 3 arms. Seven cancer patients with insomnia randomised to receive either auricular therapy (attaching semen vaccariae seeds to ear acupoints) (n=4), self-acupressure (n=1) or no treatment (n=2). Participants assigned to receive auricular therapy or self-acupressure stimulated the acupoints each night an hour before retiring to bed. The duration of participant involvement was 5 weeks. Subjective sleep quality was measured at baseline and post-treatment using the Pittsburgh Sleep Quality Index (PSQI). The impact of treatment on concerns of importance to the participants themselves was measured using the Measure Yourself Concerns and Wellbeing (MYCaW). Each participant also completed a treatment log book.

Results: All participants completed their treatment. All auricular therapy and self-acupressure participants recorded clinically significant improvements in global PSQI scores. In the auricular therapy arm mean global PSQI reduced from 12.5 at baseline to 8 following completion of treatment. In the self-acupressure arm PSQI reduced from 15 to 11. While in the no treatment arm the mean PSQI score was 14.5 at both baseline and follow up.

Conclusions: Despite the limited sample size, both auricular therapy and self-acupressure may represent potentially effective treatments for cancer patients with insomnia. The positive findings suggest further research is warranted into both treatment modalities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A lack of suitable high-performance cathode materials has become the major barrier to their applications in future advanced communication equipment and electric vehicle power systems. In this paper, we have developed a layer-by-layer self-assembly approach for fabricating a novel sandwich nanoarchitecture of multilayered LiV3O8 nanoparticle/graphene nanosheet (M-nLVO/GN) hybrid electrodes for potential use in high performance lithium ion batteries by using a porous Ni foam as a substrate. The prepared sandwich nanoarchitecture of M-nLVO/GN hybrid electrodes exhibited high performance as a cathode material for lithium-ion batteries, such as high reversible specific capacity (235 mA h g-1 at a current density of 0.3 A g-1), high coulombic efficiency (over 98%), fast rate capability (up to a current density of 10 A g-1), and superior capacity retention during cycling (90% capacity retention with a current density of 0.3 A g-1 after 300 cycles). Very significantly, this novel insight into the design and synthesis of sandwich nanoarchitecture would extend their application to various electrochemical energy storage devices, such as fuel cells and supercapacitors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, an economical route based on hydrothermal and layer-by-layer (LBL) self-assembly processes has been developed to synthesize unique Al 2O3-modified LiV3O8 nanosheets, comprising a core of LiV3O8 nanosheets and a thin Al 2O3 nanolayer. The thickness of the Al2O 3 nanolayer can be tuned by altering the LBL cycles. When evaluated for their lithium-storage properties, the 1 LBL Al2O 3-modified LiV3O8 nanosheets exhibit a high discharge capacity of 191 mA h g-1 at 300 mA g-1 (1C) over 200 cycles and excellent rate capability, demonstrating that enhanced physical and/or chemical properties can be achieved through proper surface modification. © 2014 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The impending and increasing threat of antimicrobial resistance has led to a greater focus into developing alternative therapies as substitutes for traditional antibiotics for the treatment of multi-drug resistant infections.1 Our group has developed a library of short, cost-effective, diphenylalanine-based peptides (X1-FF-X2) which selective eradicate (viability reduced >90% in 24 hours) the most resistant biofilm forms of a range of Gram-positive and negative pathogens including: methicillin resistant and sensitive Staphyloccoccus aureus and Staphyloccoccus epidermidis; Pseudomonas aeruginosa, Proteus mirabilis and Escherichia coli. They demonstrate a reduced cell cytotoxic profile (NCTC929 murine fibroblast) and limited haemolysis.2 Our molecules have the ability respond to subtle changes in pH, associated with bacterial infection, self-assembling to form β-sheet secondary structures and supramolecular hydrogels at low concentrations (~0.5%w/v). Conjugation of variety of aromatic-based drugs at the X1 position, including non-steroidal anti-inflammatories (NSAIDs), confer further pharmacological properties to the peptide motif enhancing their therapeutic potential. In vivo studies using waxworms (Galleria mellonella) provide promising preliminary results demonstrating the low toxicity and high antimicrobial activity of these low molecular weight gelators in animal models. This work shows biofunctional peptide-based nanomaterials hold great promise for future translation to patients as antimicrobial drug delivery and biomaterial platforms.3 [1] G. Laverty, S.P. Gorman and B.F. Gilmore. Int.J.Mol.Sci. 2011, 12, 6566-6596. [2] G. Laverty, A.P. McCloskey, B.F. Gilmore, D.S. Jones, J Zhou, B Xu. Biomacromolecules. 2014, 15, 9, 3429-3439. [3] A.P. McCloskey, B.F. Gilmore and G.Laverty. Pathogens. 2014, 3, 791-821.