133 resultados para Sara Beischer
Resumo:
This paper contributes to the understanding of lime-mortar masonry strength and deformation (which determine durability and allowable stresses/stiffness in design codes) by measuring the mechanical properties of brick bound with lime and lime-cement mortars. Based on the regression analysis of experimental results, models to estimate lime-mortar masonry compressive strength are proposed (less accurate for hydrated lime (CL90s) masonry due to the disparity between mortar and brick strengths). Also, three relationships between masonry elastic modulus and its compressive strength are proposed for cement-lime; hydraulic lime (NHL3.5 and 5); and hydrated/feebly hydraulic lime masonries respectively.
Disagreement between the experimental results and former mathematical prediction models (proposed primarily for cement masonry) is caused by a lack of provision for the significant deformation of lime masonry and the relative changes in strength and stiffness between mortar and brick over time (at 6 months and 1 year, the NHL 3.5 and 5 mortars are often stronger than the brick). Eurocode 6 provided the best predictions for the compressive strength of lime and cement-lime masonry based on the strength of their components. All models vastly overestimated the strength of CL90s masonry at 28 days however, Eurocode 6 became an accurate predictor after 6 months, when the mortar had acquired most of its final strength and stiffness.
The experimental results agreed with former stress-strain curves. It was evidenced that mortar strongly impacts masonry deformation, and that the masonry stress/strain relationship becomes increasingly non-linear as mortar strength lowers. It was also noted that, the influence of masonry stiffness on its compressive strength becomes smaller as the mortar hydraulicity increases.
Resumo:
Contemporary architecture has tended to increase envelope insulation levels in an unceasing effort to reduce U-values. Traditional masonry architecture in contrast was devoid of insulation, except for the inherent insulative nature of vernacular materials. Also the consistency of the outer membrane of the building skin diminished any impact due to bridging. In contemporary highly insulated walls bridges are numerous due to the necessity to bind inner and outer structural skins through insulation layers. This paper examines thermal bridging in an example of contemporary façade design and compares it with an example of traditional vernacular architecture currently being researched which is characterized by a lack of bridging elements. Focus is given to heavy weight materials of high thermal mass, which appropriately for passive architecture help moderate fluctuations in internal temperature. In an extensive experimental study samples of highly insulated precast concrete sandwich panels and lime rendered masonry walls are tested in a guarded hot-box. The building construction methods are compared for static and dynamic thermal transmittance, via heat flux and surface temperature differential measurements. Focus is given to the differential heat loss due to the thermal bridging in the sandwich panels and its associated impact on overall heat loss relative to traditional masonry construction.