151 resultados para STEROID HYDROCARBON MOLECULES
Resumo:
The zero-range potential model is used to investigate positron collisions and annihilation with molecules. The Kr dimer is considered as an example. It is shown that (i) although positrons do not bind to individual Kr atoms, they do form bound states with Kr. (ii) A sequence of vibrationally excited states of the positron-molecule complex extends into the positron continuum, where it manifests as vibrational Feshbach resonances. (iii) These resonances give a very large contribution to the positron annihilation rate. Even after averaging over the thermal positron energy distribution, the contribution of the lowest Feshbach resonance exceeds that of the non-resonant background by an order of magnitude. © 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Calculations of ?-spectra for positron annihilation on a selection of molecules, including methane and its fluoro-substitutes, ethane, propane, butane and benzene are presented. The annihilation ?-spectra characterise the momentum distribution of the electron-positron pair at the instant of annihilation. The contribution to the ?-spectra from individual molecular orbitals is obtained from electron momentum densities calculated using modern computational quantum chemistry density functional theory tools. The calculation, in its simplest form, effectively treats the low-energy (thermalised, room-temperature) positron as a plane wave and gives annihilation ?-spectra that are about 40% broader than experiment, although the main chemical trends are reproduced. We show that this effective 'narrowing' of the experimental spectra is due to the action of the molecular potential on the positron, chiefly, due to the positron repulsion from the nuclei. It leads to a suppression of the contribution of small positron-nuclear separations where the electron momentum is large. To investigate the effect of the nuclear repulsion, as well as that of short-range electron-positron and positron-molecule correlations, a linear combination of atomic orbital description of the molecular orbitals is employed. It facilitates the incorporation of correction factors which can be calculated from atomic many-body theory and account for the repulsion and correlations. Their inclusion in the calculation gives -spectrum linewidths that are in much better agreement with experiment. Furthermore, it is shown that the effective distortion of the electron momentum density, when it is observed through positron annihilation -spectra, can be approximated by a relatively simple scaling factor. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
Resumo:
Calculations of gamma spectra for positron annihilation for a selection of molecules, including methane and its fluoro-substitutes, ethane, propane, butane and benzene are presented. The contribution to the ?-spectra from individual molecular orbitals is obtained from electron momentum distributions calculated using the density functional theory (DFT) based B3LYP/TZVP model. For positrons thermalised to room temperature, the calculation, in its simplest form, effectively treats the positron as a plane wave and gives positron annihilation ?-spectra linewidths that are broader (30-40%) than experiment, although the main chemical trends are reproduced. The main physical reason for this is the neglect of positron repulsion from the nuclei. We show that this effect can be incorporated through momentum-dependent correction factors, determined from positron-atom calculations, e.g., many-body perturbation theory. Inclusion of these factors in the calculation gives linewidths that are in improved agreement with experiment.
Resumo:
BACKGROUND:
Plantar fasciitis is a common cause of heel pain. The aim of this study was twofold: to compare steroid injection with placebo injection and to compare ultrasound guided with unguided steroid injection in the management of this condition.
METHODS:
65 patients with inferior heel pain were recruited between November 2008 and June 2011. Heel pain was measured using a visual analogue scale (VAS) at baseline and follow-up 6 and 12 weeks after injection.
RESULTS:
22 patients were randomised to ultrasound guided steroid injection, 21 patients to palpation guided steroid injection and 22 to ultrasound guided placebo injection. There was a significant difference in VAS scores between the groups at 6 and 12 weeks (p=0.018 and p=0.004, respectively). There was a 19.7 (95% CI 2.5 to 37.0) difference in mean VAS scores at 6 weeks between the ultrasound guided steroid group and the placebo group and a 24.0 (95% CI 6.6 to 41.3) difference between the unguided steroid group and the placebo group at 6 weeks. At 12 weeks, the mean difference was 25.1 (95% CI 6.5 to 43.6) and 28.4 (95% CI 11.1 to 45.7) respectively between both steroid injection groups and the placebo group. There was no difference in VAS scores following steroid injection between the ultrasound guided and the unguided groups at either time point. Plantar fascia thickness was significantly reduced after injection in both active treatment groups (p=0.00).
CONCLUSIONS:
In this study, steroid injection showed a clear benefit over placebo at 6 weeks and this difference was maintained at 12 weeks.Trial Registration No ISRCTN79628180 (www.controlled-trials.com).
Resumo:
Charge transfer is a subfemtosecond process in molecules that creates chemical and electronic structure changes. At the quantum level the process can be coherently controlled by ultrashort light pulses. We show how the charge transfer process can be manipulated using a combination of dynamic and static fields and predict how this can be observed experimentally by imaging with photoionization.
Resumo:
Increased plasma levels of cellular adhesion molecules (CAMs) have been shown to be predictors of all cause mortality in individuals with chronic renal failure 12 and patients with end-stage renal disease receiving haemodialysis 3. In renal transplant recipients the predictive value of CAMs has not been well characterised. The aim of this study was to assess the relationship between CAMs and all-cause mortality during prospective follow-up of a renal transplant cohort.
Resumo:
Host defense peptides (HDPs) are an evolutionarily conserved component of the innate immune response found in all living species. They possess antimicrobial activities against a broad range of organisms including bacteria, fungi, eukaryotic parasites, and viruses. HDPs also have the ability to enhance immune responses by acting as immunomodulators. We discovered a new family of HDPs derived from pathogenic helminth (worms) that cause enormous disease in animals and humans worldwide. The discovery of these peptides was based on their similar biochemical and functional characteristics to the human defense peptide LL-37. We propose that these new peptides modulate the immune response via molecular mimicry of mammalian HDPs thus providing a mechanism behind the anti-inflammatory properties of helminth infections.
Resumo:
Polycyclic aromatic hydrocarbons (PAHs) were determined in soil and vegetation following a large scale chemical fire involving 10,000 ton of polypropylene. In comparison with sites outside the plume from the fire, PAH concentrations were elevated in grass shoots (by up to 70-fold) and in soil (by up to 370-fold). The pattern of PAH dispersion under the plume was dependent on the physical-chemical properties of individual PAHs. The lighter, least hydrophobic PAHs were dispersed into the environment at greater distances than heavier, more hydrophobic PAHs. At the most distant sampling point (4.5 km) under the plume, the low molecular weight PAHs were still considerably elevated in vegetation samples compared to control sites. Dispersion appeared to be regulated by the compounds partitioning between the vapour and particulate phase, with dry particulate deposition occurring closer to the fire source than gaseous deposition. For all PAHs, the fire resulted in greater contamination of soils compared to grasses, with the relative ratio of plant/soil contamination decreasing as hydrophobicity increased.
Resumo:
We extend the concept that life is an informational phenomenon, at every level of organisation, from molecules to the global ecological system. According to this thesis: (a) living is information processing, in which memory is maintained by both molecular states and ecological states as well as the more obvious nucleic acid coding; (b) this information processing has one overall function-to perpetuate itself; and (c) the processing method is filtration (cognition) of, and synthesis of, information at lower levels to appear at higher levels in complex systems (emergence). We show how information patterns, are united by the creation of mutual context, generating persistent consequences, to result in 'functional information'. This constructive process forms arbitrarily large complexes of information, the combined effects of which include the functions of life. Molecules and simple organisms have already been measured in terms of functional information content; we show how quantification may be extended to each level of organisation up to the ecological. In terms of a computer analogy, life is both the data and the program and its biochemical structure is the way the information is embodied. This idea supports the seamless integration of life at all scales with the physical universe. The innovation reported here is essentially to integrate these ideas, basing information on the 'general definition' of information, rather than simply the statistics of information, thereby explaining how functional information operates throughout life. © 2013 Springer Science+Business Media Dordrecht.
Resumo:
Among microporous systems metal organic frameworks are considered promising materials for molecular adsorption. In this contribution infrared spectroscopy is successfully applied to highlight the positive role played by coordinatively unsaturated Cu2+ ions in HKUST-1, acting as specific interaction sites. A properly activated material, obtained after solvent removal, is characterized by a high fraction of coordinatively unsaturated Cu2+ ions acting as preferential adsorption sites that show specific activities towards some of the most common gaseous species (NO, CO2, CO, N-2 and H-2). From a temperature dependent IR study, it has been estimated that the H-2 adsorption energy is as high as 10 kJ mol(-1). A very complex spectral evolution has been observed upon lowering the temperature. A further peculiarity of this material is the fact that it promotes ortho-para conversion of the adsorbed H-2 species.
Resumo:
The liver fluke, Fasciola hepatica, causes fascioliasis in domestic animals (sheep, cattle), a global disease that is also an important infection of humans. As soon as the parasite invades the gut wall its interaction with various host immune cells (e.g. dendritic cells, macrophages and mast cells) is complex. The parasite secretes a myriad of molecules that direct the immune response towards a favourable non-protective Th2-mediate/regulatory environment. These immunomodulatory molecules, such as cathepsin L peptidase (FhCL1), are under development as the first generation of fluke vaccines. However, this peptidase and other molecules, such as peroxiredoxin (FhPrx) and helminth defence molecule (FhHDM-1), exhibit various immunomodulatory properties that could be harnessed to help treat immune-related conditions in humans and animals.