211 resultados para Religious Speech
Resumo:
Speech recognition and language analysis of spontaneous speech arising in naturally spoken conversations are becoming the subject of much research. However, there is a shortage of spontaneous speech corpora that are freely available for academics. We therefore undertook the building of a natural conversation speech database, recording over 200 hours of conversations in English by over 600 local university students. With few exceptions, the students used their own cell phones from their own rooms or homes to speak to one another, and they were permitted to speak on any topic they chose. Although they knew that they were being recorded and that they would receive a small payment, their conversations in the corpus are probably very close to being natural and spontaneous. This paper describes a detailed case study of the problems we faced and the methods we used to make the recordings and control the collection of these social science data on a limited budget.
Resumo:
This paper studies single-channel speech separation, assuming unknown, arbitrary temporal dynamics for the speech signals to be separated. A data-driven approach is described, which matches each mixed speech segment against a composite training segment to separate the underlying clean speech segments. To advance the separation accuracy, the new approach seeks and separates the longest mixed speech segments with matching composite training segments. Lengthening the mixed speech segments to match reduces the uncertainty of the constituent training segments, and hence the error of separation. For convenience, we call the new approach Composition of Longest Segments, or CLOSE. The CLOSE method includes a data-driven approach to model long-range temporal dynamics of speech signals, and a statistical approach to identify the longest mixed speech segments with matching composite training segments. Experiments are conducted on the Wall Street Journal database, for separating mixtures of two simultaneous large-vocabulary speech utterances spoken by two different speakers. The results are evaluated using various objective and subjective measures, including the challenge of large-vocabulary continuous speech recognition. It is shown that the new separation approach leads to significant improvement in all these measures.