147 resultados para Reinforced Concrete Structures
Resumo:
This paper presents an in-depth study on the effect that composition and properties of recycled coarse aggregates from previous concrete structures, together with water/cement ratio (w/c) and a replacement ratio of coarse aggregate, have on compressive strength, its evolution through time, and its variability. A rigorous approach through statistical inference based on multiple linear regression has identified the key factors. A predictive equation is given for compressive strength when recycled coarse aggregates are used. The w/c and replacement ratio are the capital factors affecting concrete compressive strength. Their effect is significantly modified by the properties and composition of the recycled aggregates used. An equation that accurately predicts concrete compressive strength in terms of these parameters is presented. Particular attention has been paid to the complex effect that old concrete and adhered mortar have on concrete compressive strength and its mid-term evolution. It has been confirmed that the presence of contaminants tends to increase variability of compressive strength values.
Resumo:
A softened strut-and-tie macro model able to reproduce the flexural behaviour of
external beam-column joint is presented. The model is specific for concrete with hooked steel fibres (FRC) and it is designed to calculate the flexural response, as load-deflection curve, of a beam-column sub-assemblages. The model considers the presence of a constant vertical load acting on the column and of a monotonically increasing lateral force applied at the tip of the beam.
Resumo:
The concept of green concrete has been progressively introduced in concrete technology. At the same time, new generations of superplasticisers have become widely available and self-compacting concrete is being increasingly implemented. The aim of this research is to study the impact that different sustainable materials have on both fresh and hardened properties of Self-Compacting Fibre Reinforced Concrete (SCFRC) in order to implement their use in a precast concrete company. Different combinations of cement, mineral additions (active and inert), polypropylene fibres, superplasticisers, and aggregates have been considered. Fresh state performance has been assessed by means of: slump flow test, V-funnel, and J-ring. Concrete compressive strength values at different ages have been retained as representative of the material's performance in its hardened state. All these properties have been correlated with SCFRC proportioning parameters. The importance of interactions between mineral additions and between these and superplasticiser is emphasised, as well as the different consequences of using powders as cement replacement or as mineral additions.
Optimisation of Environment-friendly SCFRC mixes use in precast Concrete Industry (PDF Download Available). Available from: http://www.researchgate.net/publication/263304799_Optimisation_of_Environment-friendly_SCFRC_mixes_use_in_precast_Concrete_Industry [accessed Jun 5, 2015].
Resumo:
Implementation of both design for durability and performance-based standards and specifications are limited by the lack of rapid, simple, science-based test methods for characterizing the transport properties and deterioration resistance of concrete. To this end, this paper presents the background rationale and current developments in the application of electrical property measurements - conductivity in this instance - as a testing methodology to evaluate the relative performance of a range of concrete mixes. The technique can not only be used on standard specimens (e.g. cubes), but also lends itself to in-situ monitoring thereby allowing measurements to be obtained on the as-placed concrete. It is the latter which forms the focus of the current work. Conductivity measurements are presented for concretes with and without supplementary cementitious materials (SCM's) from demoulding up to 400-days. It is shown that electrical conductivity measurements display a continual decrease over the entire test period and attributed to the pore structure refinement due to hydration and pozzolanic reaction in those concretes containing blast furnace slag or fly ash. The term Formation Factor is introduced to rank concrete performance in terms of is resistance to chloride penetration.
Resumo:
This paper addresses the problems of effective in situ measurement of the real-time strain for bridge weigh in motion in reinforced concrete bridge structures through the use of optical fiber sensor systems. By undertaking a series of tests, coupled with dynamic loading, the performance of fiber Bragg grating-based sensor systems with various amplification techniques were investigated. In recent years, structural health monitoring (SHM) systems have been developed to monitor bridge deterioration, to assess load levels and hence extend bridge life and safety. Conventional SHM systems, based on measuring strain, can be used to improve knowledge of the bridge's capacity to resist loads but generally give no information on the causes of any increase in stresses. Therefore, it is necessary to find accurate sensors capable of capturing peak strains under dynamic load and suitable methods for attaching these strain sensors to existing and new bridge structures. Additionally, it is important to ensure accurate strain transfer between concrete and steel, adhesives layer, and strain sensor. The results show the benefits in the use of optical fiber networks under these circumstances and their ability to deliver data when conventional sensors cannot capture accurate strains and/or peak strains.
Resumo:
Durability of concrete structures is primarily dependent on the environmental influences, i.e. the penetration of aggressive substances in the structural element from the environment. Penetrability is an important durability indicator of concrete and by specifying different classes of penetrability of concrete it should be possible to design a structure with the required resistance to environmental loads. This chapter covers descriptions of the available and commonly applied in situ and laboratory, non-invasive and semi-invasive test methods for evaluating concrete penetrability properties.
Resumo:
This paper is concerned with the finite element simulation of debonding failures in FRP-strengthened concrete beams. A key challenge for such simulations is that common solution techniques such as the Newton-Raphson method and the arc-length method often fail to converge. This paper examines the effectiveness of using a dynamic analysis approach in such FE simulations, in which debonding failure is treated as a dynamic problem and solved using an appropriate time integration method. Numerical results are presented to show that an appropriate dynamic approach effectively overcomes the convergence problem and provides accurate predictions of test results.
Resumo:
Concrete cover separation is a common failure mode of reinforced concrete (RC) beams strengthened with a fibre-reinforced polymer (FRP) plate bonded to the tension face (FRP-plated RC beams). Plate-end FRP U-jackets have previously been explored as a mitigation measure to delay or suppress concrete cover separation, although its effectiveness needs further clarification. The paper presents the first systemic experimental study on the use of FRP U-jackets of different forms for mitigating the concrete cover separation failure. A total of ten full-scale FRP-plated RC beams were tested. The test results show that both the ultimate load and the ductility of the beams were enhanced by the U-jackets. Among the forms of U-jackets explored, those inclined at 45o are the most effective.
Resumo:
Reinforced concrete (RC) jacketing is a common method for retrofitting existing columns with poor structural performance. It can be applied in two different ways: if the continuity of the jacket is ensured, the axial load of the column can be transferred to the jacket, which will be directly loaded; conversely, if no continuity is provided, the jacket will induce only confinement action. In both cases the strength and ductility evaluation is rather complex, due to the different physical phenomena included, such as confinement, core-jacket composite action, preload and buckling of longitudinal bars.
Although different theoretical studies have been carried out to calculate the confinement effects, a practical approach to evaluate the flexural capacity and ductility is still missing. The calculation of these quantities is often related to the use of commercial software, taking advantage of numerical methods such as fibre method or finite element method.
This paper presents a simplified approach to calculate the flexural strength and ductility of square RC jacketed sections subjected to axial load and bending moment. In particular the proposed approach is based on the calibration of the stress-block parameters including the confinement effect. Equilibrium equations are determined and buckling of longitudinal bars is modelled with a suitable stress-strain law. Moment-curvature curves are derived with simple calculations. Finally, comparisons are made with numerical analyses carried out with the code OpenSees and with experimental data available in the literature, showing good agreement.
Resumo:
In establishing the reliability of performance-related design methods for concrete – which are relevant for resistance against chloride-induced corrosion - long-term experience of local materials and practices and detailed knowledge of the ambient and local micro-climate are critical. Furthermore, in the development of analytical models for performance-based design, calibration against test data representative of actual conditions in practice is required. To this end, the current study presents results from full-scale, concrete pier-stems under long-term exposure to a marine environment with work focussing on XS2 (below mid-tide level) in which the concrete is regarded as fully saturated and XS3 (tidal, splash and spray) in which the concrete is in an unsaturated condition. These exposures represent zones where concrete structures are most susceptible to ionic ingress and deterioration. Chloride profiles and chloride transport behaviour are studied using both an empirical model (erfc function) and a physical model (ClinConc). The time dependency of surface chloride concentration (Cs) and apparent diffusivity (Da) were established for the empirical model whereas, in the ClinConc model (originally based on saturated concrete), two new environmental factors were introduced for the XS3 environmental exposure zone. Although the XS3 is considered as one environmental exposure zone according to BS EN 206-1:2013, the work has highlighted that even within this zone, significant changes in chloride ingress are evident. This study aims to update the parameters of both models for predicting the long term transport behaviour of concrete subjected to environmental exposure classes XS2 and XS3.
Resumo:
The integral variability of raw materials, lack of awareness and appreciation of the technologies for achieving quality control and lack of appreciation of the micro and macro environmental conditions that the structures will be subjected, makes modern day concreting a challenge. This also makes Designers and Engineers adhere more closely to prescriptive standards developed for relatively less aggressive environments. The data from exposure sites and real structures prove, categorically, that the prescriptive specifications are inadequate for chloride environments. In light of this shortcoming, a more pragmatic approach would be to adopt performance-based specifications which are familiar to industry in the form of specification for mechanical strength. A recently completed RILEM technical committee made significant advances in making such an approach feasible.
Furthering a performance-based specification requires establishment of reliable laboratory and on-site test methods, as well as easy to perform service-life models. This article highlights both laboratory and on-site test methods for chloride diffusivity/electrical resistivity and the relationship between these tests for a range of concretes. Further, a performance-based approach using an on-site diffusivity test is outlined that can provide an easier to apply/adopt practice for Engineers and asset managers for specifying/testing concrete structures.
Resumo:
This paper presents the results of an experimental study (the ultimate load capacity of composite metal decking/concrete floor slabs. Full-scale in situ testing of composite floor slabs was carried out in the Building Research Establishment's Large Building Test Facility (LBTF) at Cardington. A parallel laboratory test programme, which compared the behaviour of composite floor slabs strips, also carried out at Queen's University Belfast (QUB). Articular attention was paid to the contribution of compressive membrane action to the load carrying capacity. The results of both test programmes were compared with predictions by yield line theory and a theoretical prediction method in which the amount of horizontal restraint mid be assessed. The full-scale tests clearly demon-wed the significant contribution of compressive membrane effects to the load capacity of interior floor panels with a lesser contribution to edge/corner panels.
Resumo:
The deterioration of infrastructure, such as bridges, has been one of the major challenges facing both the designers and the owners of such utilities. Sustainable development and a climate of increasing commercialism has led to a requirement for more accurate means of structural analysis. Bridge assessment is one area where this is particularly relevant. It has been known for some time that bridge deck slabs have inherent enhanced strength due to the presence of arching or compressive membrane action (CMA) but only in recent years has there been some acceptance of a rational treatment of this phenomenon for design and assessment purposes. To use the benefits of arching action, this paper presents the results of tests carried out on a reinforced-concrete beam and slab bridge in Northern Ireland that incorporated novel reinforcement type and position. The research was aimed at extending previous laboratory tests on 1/3scale bridge deck edge panels. The measured crack widths and deflections have been compared with the current code requirements.