142 resultados para Receptors, Steroid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports the synthesis of dendrons containing a spermine unit at their focal point. The dendritic branching is based on L-lysine building blocks, and has terminal oligo(ethyleneglycol) units on the surface. As a consequence of the solubilising surface groups, these dendrons have high solubility in solvents with widely different polarities (e.g., dichloromethane and water). The protonated spermine unit at the focal point is an effective anion binding fragment and, as such, these dendrons are able to bind to polyanions. This paper demonstrates that polyanions can be bound in both dichloromethane (using a dye solubilisation assay) and in water (competitive ATP binding assay). In organic media the dendritic branching appears to have a pro-active effect on the solubilisation of the dye, with more dye being solubilised by higher generations of dendron. On the other hand, in water the degree of branching has no impact on the anion binding process. We propose that in this case, the spermine unit is effectively solvated by the bulk solvent and the dendritic branching does not need to play an active role in assisting solubility. Dendritic effects on anion binding have therefore been elucidated in different solvents. The dendritic branching plays a pro-active role in providing the anion binding unit with good solubility in apolar solvent media.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of proteases in viral infection of the lung is poorly understood. Thus, we examined matrix metalloproteinases (MMPs) and cathepsin proteases in respiratory syncytial virus (RSV)-infected mouse lungs. RSV-induced gene expression for MMPs -2, -3, -7, -8, -9, -10, -12, -13, -14, -16, -17, -19, -20, -25, -27, and -28 and cathepsins B, C, E, G, H, K, L1, S, W, and Z in the airways of Friend leukemia virus B sensitive strain mice. Increased proteases were present in the bronchoalveolar lavage fluid (BALF) and lung tissue during infection. Mitochondrial antiviral-signaling protein (MAVS) and TIR-domain-containing adapter-inducing interferon-β-deficient mice were exposed to RSV. Mavs-deficient mice had significantly lower expression of airway MMP-2, -3, -7, -8, -9, -10, -12, -13, and -28 and cathepsins C, G, K, S, W, and Z. In lung epithelial cells, retinoic acid-inducible gene-1 (RIG-I) was identified as the major RIG-I-like receptor required for RSV-induced protease expression via MAVS. Overexpression of RIG-I or treatment with interferon-β in these cells induced MMP and cathepsin gene and protein expression. The significance of RIG-1 protease induction was demonstrated by the fact that inhibiting proteases with batimastat, E64 or ribavirin prevented airway hyperresponsiveness and enhanced viral clearance in RSV-infected mice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Therapeutic inhibition of poly(ADP-ribose) polymerase (PARP), as monotherapy or to supplement the potencies of other agents, is a promising strategy in cancer treatment. We previously reported that the first PARP inhibitor to enter clinical trial, rucaparib (AG014699), induced vasodilation in vivo in xenografts, potentiating response to temozolomide. We now report that rucaparib inhibits the activity of the muscle contraction mediator myosin light chain kinase (MLCK) 10-fold more potently than its commercially available inhibitor ML-9. Moreover, rucaparib produces additive relaxation above the maximal degree achievable with ML-9, suggesting that MLCK inhibition is not solely responsible for dilation. Inhibition of nitric oxide synthesis using L-NMMA also failed to impact rucaparib's activity. Rucaparib contains the nicotinamide pharmacophore, suggesting it may inhibit other NAD+-dependent processes. NAD+ exerts P2 purinergic receptor-dependent inhibition of smooth muscle contraction. Indiscriminate blockade of the P2 purinergic receptors with suramin abrogated rucaparib-induced vasodilation in rat arterial tissue without affecting ML-9-evoked dilation, although the specific receptor subtypes responsible have not been unequivocally identified. Furthermore, dorsal window chamber and real time tumor vessel perfusion analyses in PARP-1-/- mice indicate a potential role for PARP in dilation of tumor-recruited vessels. Finally, rucaparib provoked relaxation in 70% of patient-derived tumor-associated vessels. These data provide tantalising evidence of the complexity of the mechanism underlying rucaparib-mediated vasodilation.