137 resultados para Radio in aeronautics.
Resumo:
Cognitive radio network is defined as an intelligent wireless communication network that should be able to adaptively reconfigure its communication parameters to meet the demands of the transmission network or the user. In this context one possible way to utilize unused licensed spectrum without interfering with incumbent users is through spectrum sensing. Due to channel uncertainties, single cognitive (opportunistic) user cannot make a decision reliably and hence collaboration among multiple users is often required. Here collaboration among large number of users tends to increase power consumption and introduces large communication overheads. In this paper, the number of collaborating users is optimized in order to maximize the probability of detection for any given power budget in a cognitive radio network, while satisfying constraints on the false alarm probability. We show that for the maximum probability of detection, collaboration of only a subset of available opportunistic users is required. The robustness of our proposed spectrum sensing algorithm is also examined under flat Rayleigh fading and AWGN channel conditions.
Resumo:
A near-isothermal micro-trickle bed reactor operated under radio frequency heating was developed. The reactor bed was packed with nickel ferrite micro-particles of 110. μm diameter, generating heat by the application of RF field at 180. kHz. Hydrodynamics in a co-current configuration was analysed and heat transfer rates were determined at temperature ranging from 55 to 100. °C. A multi-zone reactor bed of several heating and catalytic zones was proposed in order to achieve near-isothermal operations. Exact positioning, number of the heating zones and length of the heating zones composed of a mixture of nickel ferrite and a catalyst were determined by solving a one dimensional model of heat transfer by conduction and convection. The conductive losses contributed up to 30% in the total thermal losses from the reactor. Three heating zones were required to obtain an isothermal length of 50. mm with a temperature non-uniformity of 2. K. A good agreement between the modelling and experimental results was obtained for temperature profiles of the reactor. © 2013 Elsevier B.V.
Resumo:
Modern wireless systems are expected to operate in multiple frequency bands and support diverse communications standards to provide the high volume and speed of data transmission. Today's major limitations of their performance are imposed by interference, spurious emission and noise generated by high-power carriers in antennas and passive components of the RF front-end. Passive Intermodulation (PIM), which causes the combinatorial frequency generation in the operational bands, presents a primary challenge to signal integrity, system efficacy and data throughput. © 2013 IEEE.
Resumo:
This paper investigates the characteristics of the complex received signal in body area networks for two environments at the opposite ends of the multipath spectrum at 2.45 GHz. Important attributes of the complex channel such as the Gaussianity of the quadrature components and power imbalance, which form the basis of many popular fading models, are investigated. It is found that in anechoic environments the assumption of Gaussian distributed quadrature components will not always yield a satisfactory fit. Using a complex received signal model which considers a non-isotropic scattered signal contribution along with the presence of an optional dominant signal component, we use an autocorrelation function originally derived for mobile-to-mobile communications to model the temporal behavior of a range of dynamic body area network channels with considerable success. In reverberant environments, it was observed that the real part of the complex autocorrelation function for body area network channels decayed slightly quicker than that expected in traditional land mobile channels. © 2013 IEEE.
Resumo:
We investigate whether the presence of a human body in wearable communications should be considered as part of the radiating structure or as part of the local radio environment. The Rician $K$ -factor was employed as a quantitative measure of the effect of the user's body for five environments and two mounting locations. Presented empirical results indicated that the environment had a greater impact on the $K$-factor values than the position of the transmit antenna for the ultrawideband signals used, confirming that the human body should be considered primarily as part of the overall radiating system when the antenna is worn on the body. Furthermore, independent variations also existed in the $K$-factor values for the differing antenna-body mounting positions, indicating that as the position changed, then the radiating effects and the contribution from the body changed. This is significant for ensuring body-antenna systems are accurately modeled in system-level simulations.
Resumo:
With its origins in the trick films of the 1890s and early 1900s, British science fiction film has a long history. While Things to Come (1936) is often identified as significant for being written by H.G.Wells, one of the fathers of science fiction as a genre, the importance of the interactions between media in the development of British science fiction film are often set aside. This chapter examines the importance of broadcast media to film-making in Britain, focusing on the 1950s as a period often valourised in writings about American science fiction, to the detriment of other national expressions of the genre. This period is key to the development of the genre in Britain, however, with the establishment of television as a popular medium incorporating the development of domestic science fiction television alongside the import of American products, together with the spread of the very term ‘science fiction’ through books, pulps and comics as well as radio, television and cinema. It was also the time of a backlash against the perceived threat of American soft cultural power embodied in the attractive shine of science fiction with its promise of a bright technological future. In particular, this chapter examines the significance of the relationship between the BBC television and radio services and the film production company Hammer, which was responsible for multiple adaptations of BBC properties, including a number of science fiction texts. The Hammer adaptation of the television serial The Quatermass Experiment proved to be the first major success for the company, moving it towards its most famous identity as producer of horror texts, though often horror with an underlying scientific element, as with their successful series of Frankenstein films. This chapter thus argues that the interaction between film and broadcast media in relation to science fiction was crucial at this historical juncture, not only in helping promote the identities of filmmakers like Hammer, but also in supporting the identity of the BBC and its properties, and in acting as a nexus for the then current debates on taste and national identity.
Resumo:
In this paper, we propose physical layer security for cooperative cognitive radio networks (CCRNs) with relay selection in the presence of multiple primary users and multiple eavesdroppers. To be specific, we propose three relay selection schemes, namely, opportunistic relay selection (ORS), suboptimal relay selection (SoRS), and partial relay selection (PRS) for secured CCRNs, which are based on the availability of channel state information (CSI) at the receivers. For each approach, we derive exact and asymptotic expressions for the secrecy outage probability. Results show that under the assumption of perfect CSI, ORS outperforms both SoRS and PRS.
Resumo:
The human body is an extremely challenging environment for the operation of wireless communications systems, not least because of the complex antenna-body electromagnetic interaction effects which can occur. This is further compounded by the impact of movement and the propagation characteristics of the local environment which all have an effect upon body centric communications channels. As the successful design of body area networks (BANs) and other types of body centric system is inextricably linked to a thorough understanding of these factors, the aim of this paper is to conduct a survey of the current state of the art in relation to propagation and channel models primarily for BANs but also considering other types of body centric communications. We initially discuss some of the standardization efforts performed by the Institute of Electrical and Electronics Engineers 802.15.6 task group before focusing on the two most popular types of technologies currently being considered for BANs, namely narrowband and Ultrawideband (UWB) communications. For narrowband communications the applicability of a generic path loss model is contended, before presenting some of the scenario specific models which have proven successful. The impacts of human body shadowing and small-scale fading are also presented alongside some of the most recent research into the Doppler and time dependencies of BANs. For UWB BAN communications, we again consider the path loss as well as empirical tap delay line models developed from a number of extensive channel measurement campaigns conducted by research institutions around the world. Ongoing efforts within collaborative projects such as Committee on Science and Technology Action IC1004 are also described. Finally, recent years have also seen significant developments in other areas of body centric communications such as off-body and body-to-body communications. We highlight some of the newest relevant research in these areas as well as discussing some of the advanced topics which are currently being addressed in the field of body centric communications. Key Points Channel models for body centric comms ©2014. The Authors.
Resumo:
This paper presents the results of a measurement campaign aimed at characterizing and modeling the indoor radio channel between two hypothetical cellular handsets. The device-to-device channel measurements were made at 868 MHz and investigated a number of different everyday scenarios such as the devices being held at the user's heads, placed in a pocket and one of the devices placed on a desktop. The recently proposed shadowed k-μ fading model was used to characterize these channels and was shown to provide a good description of the measured data. It was also evident from the experiments, that the device-to-device communications channel is susceptible to shadowing caused by the human body.
Resumo:
In recent years, the embracement of smart devices carried or worn by people have transformed how society interact with one another. This trend has also been observed in the advancement of vehicular networks. Here, developments in wireless technologies for vehicle-to-vehicle (V2V) and vehicle-to-roadside (V2R) communications are leading to a new generation of vehicular networks. A natural extension of both types of networks will be their eventual wireless integration. Both people and vehicles will undoubtedly form integral parts of future mobile networks of people and things. Central to this will be the person-to-vehicle (P2V) communications channel. As the P2V channel will be subject to different signal propagation characteristics than either type of communication system considered in isolation, it is imperative the characteristics of the wireless channel must first be fully understood. To the best of the author's knowledge, this is a topic which has not yet been addressed in the open literature. In this paper we will present our most recent research on the statistical characterization of the 5.8 GHz person-to-vehicle channel in an urban environment.
Resumo:
In this paper, the results of radio channel measurements between two hypothetical cellular handsets in an outdoor urban environment are reported. The device-to-device channel measurements were made at 868 MHz and investigated a number of different everyday usage scenarios such as the devices being held at the user's heads, placed in a pocket while one of the users rotated or both moved randomly. It was found that shadowing of the main signal path caused by the human body will be an important factor in future device-to-device communications at this frequency. The recently proposed shadowed κ-μ fading model was used to characterize these channels and shown to provide a good description of the measured data.
Resumo:
In this paper, a number of off-body channels which are susceptible to shadowing caused by the human body are investigated. In particular, the recently proposed shadowed κ–μ fading model is fitted to data obtained from field trials performed in low multipath conditions at 2.45 GHz. It is shown that this model provides a significantly improved fit to off-body channels which are subject to shadowing when compared to other fading models such as lognormal, Nakagami-m and Rice which are commonly applied to model fading in body centric communications channels.