176 resultados para Practical nurses
Resumo:
When studying heterogeneous aquifer systems, especially at regional scale, a degree of generalization is anticipated. This can be due to sparse sampling regimes, complex depositional environments or lack of accessibility to measure the subsurface. This can lead to an inaccurate conceptualization which can be detrimental when applied to groundwater flow models. It is important that numerical models are based on observed and accurate geological information and do not rely on the distribution of artificial aquifer properties. This can still be problematic as data will be modelled at a different scale to which it was collected. It is proposed here that integrating geophysics and upscaling techniques can assist in a more realistic and deterministic groundwater flow model. In this study, the sedimentary aquifer of the Lagan Valley in Northern Ireland is chosen due to intruding sub-vertical dolerite dykes. These dykes are of a lower permeability than the sandstone aquifer. The use of airborne magnetics allows the delineation of heterogeneities, confirmed by field analysis. Permeability measured at the field scale is then upscaled to different levels using a correlation with the geophysical data, creating equivalent parameters that can be directly imported into numerical groundwater flow models. These parameters include directional equivalent permeabilities and anisotropy. Several stages of upscaling are modelled in finite element. Initial modelling is providing promising results, especially at the intermediate scale, suggesting an accurate distribution of aquifer properties. This deterministic based methodology is being expanded to include stochastic methods of obtaining heterogeneity location based on airborne geophysical data. This is through the Direct Sample method of Multiple-Point Statistics (MPS). This method uses the magnetics as a training image to computationally determine a probabilistic occurrence of heterogeneity. There is also a need to apply the method to alternate geological contexts where the heterogeneity is of a higher permeability than the host rock.
Resumo:
Introduction: Efforts are needed to improve palliative care in rural communities, given the unique characteristics and inherent challenges with respect to working within the physical aspects of residential settings. Nurses who work in rural communities play a key role in the delivery of palliative care services. Hence, the purpose of this study was to explore nurses’ experiences of providing palliative care in rural communities, with a particular focus on the impact of the physical residential setting.
Methods: This study was grounded in a qualitative approach utilizing an exploratory descriptive design. Individual telephone interviews were conducted with 21 community nurses. Data were analyzed by thematic content analysis.
Results: Nurses described the characteristics of working in a rural community and how it influences their perception of their role, highlighting the strong sense of community that exists but how system changes over the past decade have changed the way they provide care. They also described the key role that they play, which was often termed a ‘jack of all trades’, but focused on providing emotional, physical, and spiritual care while trying to manage many challenges related to transitioning and working with other healthcare providers. Finally, nurses described how the challenges of working within the physical constraints of a rural residential setting impeded their care provision to clients who are dying in the community, specifically related to the long distances that they travel while dealing with bad weather.
Resumo:
Cloud computing technology has rapidly evolved over the last decade, offering an alternative way to store and work with large amounts of data. However data security remains an important issue particularly when using a public cloud service provider. The recent area of homomorphic cryptography allows computation on encrypted data, which would allow users to ensure data privacy on the cloud and increase the potential market for cloud computing. A significant amount of research on homomorphic cryptography appeared in the literature over the last few years; yet the performance of existing implementations of encryption schemes remains unsuitable for real time applications. One way this limitation is being addressed is through the use of graphics processing units (GPUs) and field programmable gate arrays (FPGAs) for implementations of homomorphic encryption schemes. This review presents the current state of the art in this promising new area of research and highlights the interesting remaining open problems.