131 resultados para Permanent preservation areas
Resumo:
Cryptotephras (tephra not visible to the naked eye) form the foundation of the tephrostratigraphic frameworks used in Europe to date and correlate widely distributed geologic, paleoenvironmental and archaeological records. Pyne-O'Donnell et al. (2012) established the potential for developing a similar crypto-tephrostratigraphy across eastern North America by identifying multiple tephra, including the White River Ash (east; WRAe), St. Helens We and East Lake, in a peat core located in Newfoundland. Following on from this work, several ongoing projects have examined additional peat cores from Michigan, New York State, Maine, Nova Scotia and Newfoundland to build a tephrostratigraphic framework for this region. Using the precedent set by recent research by Jensen et al.(in press) that correlated the Alaskan WRAe to the European cryptotephra AD860B, unknown tephras identified in this work were not necessarily assumed to be from "expected" source areas (e.g. the Cascades). Here we present several examples of the preservation of tephra layers with an intercontinental distribution (i.e. WRAe and Ksudach 1), from relatively small magnitude events (i.e. St. Helens layer T, Mono Crater), and the first example of a Mexican ash in the NE (Volcan Ceboruco, Jala pumice). There are several implications of the identification of these units. These far-travelled ashes: (1) highlight the need to consider "ultra" distal source volcanoes for unknown cryptotephra deposits,. (2) present an opportunity for physical volcanologists to examine why some eruptions have an exceptional distribution of ash that is not necessarily controlled by the magnitude of the event. (3) complicate the idea of using tephrostratigraphic frameworks to understand the frequency of eruptions towards aiding hazard planning and prediction (e.g. Swindles et al., 2011). (4) show that there is a real potential to link tropical and mid to high-latitude paleoenvironmental records. Jensen et al. (in press) Transatlantic correlation of the Alaskan White River Ash. Geology. Pyne-O'Donnell et al. (2012). High-precision ultra-distal Holocene tephrochronology in North America. Quaternary Science Reviews, 52, 6-11. Swindles et al. (2011). A 7000 yr perspective on volcanic ash clouds affecting northern Europe. Geology, 39, 887-890.
Resumo:
PURPOSE: To evaluate the permanent prostate brachytherapy (PPB) learning curve using postimplant multisector dosimetric analysis and to assess the correlation between sector -specific dosimetry and patient-reported outcome measures (PROMs).
METHODS AND METHODS: First 200 patients treated with (125)I PPB monotherapy (145 Gy) at a single institution were assessed. Postimplant dosimetry (PID) using CT was evaluated for whole prostate (global) and 12 sectors, assessing minimum dose to 90% of prostate (D90) and dose to 0.1 cm(3) of rectum (D0.1cc). Global and sector PID results were evaluated to investigate changes in D90 with case number. Urinary and bowel PROMs were assessed using the International Prostate Symptom Score and the Expanded Prostate Cancer Index Composite questionnaire. The correlation between global and individual sector PID and urinary/bowel PROMs was also evaluated.
RESULTS: Linear regression confirmed a significant improvement in global D90 with case number (r(2) = 0.20; p = 0.001) at a rate of 0.11 Gy/case. Postimplant D90 of base sectors increased at a rate of 0.11-0.15 Gy/case (p = 0.0001) and matched global improvement. The regression lines of midgland and apex sectors were significantly different from global D90 (p = 0.01). Posterior midgland sectors showed a significant reduction in D90 with case number at a rate of 0.13-0.19 Gy/case (p = 0.01). Dose to posterior midgland sectors correlated with rectal D0.1cc dose but not bowel PROMs. Dose to posterior midgland sectors correlated with urinary International Prostate Symptom Score change, which was not apparent when global D90 alone was considered.
CONCLUSIONS: Sector analysis provided increased spatial information regarding the PPB learning curve. Furthermore, sector analysis correlated with urinary PROMs and rectal dose.
Resumo:
Rapid in situ diagnosis of damage is a key issue in the preservation of stone-built cultural heritage. This is evident in the increasing number of congresses, workshops and publications dealing with this issue. With this increased activity has come, however, the realisation that for many culturally significant artefacts it is not possible either to remove samples for analysis or to affix surface markers for measurement. It is for this reason that there has been a growth of interest in non-destructive and minimally invasive techniques for characterising internal and external stone condition. With this interest has come the realisation that no single technique can adequately encompass the wide variety of parameters to be assessed or provide the range of information required to identify appropriate conservation. In this paper we describe a strategy to address these problems through the development of an integrated `tool kit' of measurement and analytical techniques aimed specifically at linking object-specific research to appropriate intervention. The strategy is based initially upon the acquisition of accurate three-dimensional models of stone-built heritage at different scales using a combination of millimetre accurate LiDAR and sub-millimetre accurate Object Scanning that can be exported into a GIS or directly into CAD. These are currently used to overlay information on stone characteristics obtained through a combination of Ground Penetrating Radar, Surface Permeametry, Colorimetry and X-ray Fluorescence, but the possibility exists for adding to this array of techniques as appropriate. In addition to the integrated three-dimensional data array provided by superimposition upon Digital Terrain Models, there is the capability of accurate re-measurement to show patterns of surface loss and changes in material condition over time. Thus it is possible to both record and base-line condition and to identify areas that require either preventive maintenance or more significant pre-emptive intervention. In pursuit of these goals the authors are developing, through a UK Government supported collaboration between University Researchers and Conservation Architects, commercially viable protocols for damage diagnosis, condition monitoring and eventually mechanisms for prioritizing repairs to stone-built heritage. The understanding is, however, that such strategies are not age-constrained and can ultimately be applied to structures of any age.
Resumo:
Cadmium and lead were determined in fruit and vegetable produce (~1300 samples) collected from a field and market basket study of locally grown produce from the South-West of Britain (Devon and Cornwall). These were compared with similarly locally grown produce from the North-East of Britain (Aberdeenshire). The concentrations of cadmium and lead in the market basket produce were compared to the maximum levels (ML) set by the European Union (EU). For cadmium 0.2% of the samples exceeded the ML, and 0.6% of the samples exceeded the ML for lead. The location of cadmium and lead in potatoes was performed using laser ablation ICP-MS. All tested samples exhibited higher lead concentrations, and most exhibited increased concentrations of cadmium in the potato skin compared to the flesh. The concentrations of cadmium and lead found in fruits and vegetables sampled during this study do not increase concern about risk to human health.
Resumo:
Porous solids such as zeolites and metal-organic frameworks are useful in molecular separation and in catalysis, but their solid nature can impose limitations. For example, liquid solvents, rather than porous solids, are the most mature technology for post-combustion capture of carbon dioxide because liquid circulation systems are more easily retrofitted to existing plants. Solid porous adsorbents offer major benefits, such as lower energy penalties in adsorption-desorption cycles, but they are difficult to implement in conventional flow processes. Materials that combine the properties of fluidity and permanent porosity could therefore offer technological advantages, but permanent porosity is not associated with conventional liquids. Here we report free-flowing liquids whose bulk properties are determined by their permanent porosity. To achieve this, we designed cage molecules that provide a well-defined pore space and that are highly soluble in solvents whose molecules are too large to enter the pores. The concentration of unoccupied cages can thus be around 500 times greater than in other molecular solutions that contain cavities, resulting in a marked change in bulk properties, such as an eightfold increase in the solubility of methane gas. Our results provide the basis for development of a new class of functional porous materials for chemical processes, and we present a one-step, multigram scale-up route for highly soluble 'scrambled' porous cages prepared from a mixture of commercially available reagents. The unifying design principle for these materials is the avoidance of functional groups that can penetrate into the molecular cage cavities.
Resumo:
In this paper, we introduce a novel approach to face recognition which simultaneously tackles three combined challenges: 1) uneven illumination; 2) partial occlusion; and 3) limited training data. The new approach performs lighting normalization, occlusion de-emphasis and finally face recognition, based on finding the largest matching area (LMA) at each point on the face, as opposed to traditional fixed-size local area-based approaches. Robustness is achieved with novel approaches for feature extraction, LMA-based face image comparison and unseen data modeling. On the extended YaleB and AR face databases for face identification, our method using only a single training image per person, outperforms other methods using a single training image, and matches or exceeds methods which require multiple training images. On the labeled faces in the wild face verification database, our method outperforms comparable unsupervised methods. We also show that the new method performs competitively even when the training images are corrupted.