111 resultados para Pedestrian bridge


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates a low-cost wavelet-based approach for the preliminary monitoring of bridge structures, consisting of the use of a vehicle fitted with accelerometers on its axles. The approach aims to reduce the need for direct instrumentation of the bridge. A time-frequency analysis is carried out in order to identify the existence and location of damage from vehicle accelerations. Firstly, in theoretical simulations, a simplified vehicle-bridge interaction model is used to investigate the effectiveness of the approach. A number of damage indicators are evaluated and compared. A range of parameters such as the bridge span, vehicle speed, damage level and location, signal noise and road roughness are varied in simulations. Secondly, a scaled laboratory experiment is carried out to validate the results of the theoretical analysis and assess the ability of the selected damage indicators to detect changes in the bridge response from vehicle accelerations. 

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Damage detection in bridges using vibration-based methods is an area of growing research interest. Improved assessment
methodologies combined with state-of-the-art sensor technology are rapidly making these approaches applicable for real-world
structures. Applying these techniques to the detection and monitoring of scour around bridge foundations has remained
challenging; however this area has gained attraction in recent years. Several authors have investigated a range of methods but
there is still significant work required to achieve a rounded and widely applicable methodology to detect and monitor scour.This
paper presents a novel Vehicle-Bridge-Soil Dynamic Interaction (VBSDI) model which can be used to simulate the effect of scour
on an integral bridge. The model outputs dynamic signals which can be analysed to determine modal parameters and the variation
of these parameters with respect to scour can be examined.The key novelty of this model is that it is the first numerical model for
simulating scour that combines a realistic vehicle loadingmodel with a robust foundation soil responsemodel.This paper provides a
description of the model development and explains the mathematical theory underlying themodel. Finally a case study application
of the model using typical bridge, soil, and vehicle properties is provided.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The potential benefits of combining the elegance of the stress ribbon concept with the robustness and speed of construction of the FlexiArch is discussed. In combination, multi-span pedestrian/cycle bridges which are innovative, highly durable and have optimal full life cycle costs can be produced with lengths of over 100 m. As the stress ribbon system is well known, the main emphasis of this paper will be on the FlexiArch. Since 1900 few arch bridges have been built, but with the development of the innovative FlexiArch this trend can be reversed as they can be installed rapidly, are cost competitive, have all the attributes of masonry arches and are very sustainable. Thus the FlexiArch represents a very attractive alternative to heavily reinforced cast in situ arches currently used in combination with stress ribbon deck systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bridge scour is the number one cause of failure in bridges located over waterways. Scour leads to rapid losses in foundation stiffness and can cause sudden collapse. Previous research on bridge health monitoring has used changes in natural frequency to identify damage in bridge beams. The possibility of using a similar approach to identifying scour is investigated in this paper. To assess if this approach is feasible, it is necessary to establish how scour affects the natural frequency of a bridge, and if it is possible to measure changes in frequency using the bridge dynamic response to a passing vehicle. To address these questions, a novel vehicle–bridge–soil interaction (VBSI) model was developed. By carrying out a modal study in this model, it is shown that for a wide range of possible soil states, there is a clear reduction in the natural frequency of the first mode of the bridge with scour. Moreover, it is shown that the response signals on the bridge from vehicular loading are sufficient to allow these changes in frequency to be detected.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sidewalks are integral features of city centres. They provide the channels through which activities and interactions evolve and in turn these interactions cause the sidewalks to evolve. They help to articulate the builtform and open spaces in tying together. However, historically sidewalks have received less attention relative to urban squares and civic spaces. Owing to the concept of walkable cities, sidewalks are gaining importance. This paper provides a critical overview on the apparent ‘amnesia’ in urban design and planning theories and visits a popular sidewalk in Belfast city centre to examine the paradox and perspectives.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A field experiment was conducted on a real continuous steel Gerber-truss bridge with artificial damage applied. This article summarizes the results of the experiment for bridge damage detection utilizing traffic-induced vibrations. It investigates the sensitivities of a number of quantities to bridge damage including the identified modal parameters and their statistical patterns, Nair’s damage indicator and its statistical pattern and different sets of measurement points. The modal parameters are identified by autoregressive time-series models. The decision on bridge health condition is made and the sensitivity of variables is evaluated with the aid of the Mahalanobis–Taguchi system, a multivariate pattern recognition tool. Several observations are made as follows. For the modal parameters, although bridge damage detection can be achieved by performing Mahalanobis–Taguchi system on certain modal parameters of certain sets of measurement points, difficulties were faced in subjective selection of meaningful bridge modes and low sensitivity of the statistical pattern of the modal parameters to damage. For Nair’s damage indicator, bridge damage detection could be achieved by performing Mahalanobis–Taguchi system on Nair’s damage indicators of most sets of measurement points. As a damage indicator, Nair’s damage indicator was superior to the modal parameters. Three main advantages were observed: it does not require any subjective decision in calculating Nair’s damage indicator, thus potential human errors can be prevented and an automatic detection task can be achieved; its statistical pattern has high sensitivity to damage and, finally, it is flexible regarding the choice of sets of measurement points.