138 resultados para Particle storm
Resumo:
The growth and saturation of Buneman-type instabilities is examined with a particle-in-cell (PIC) simulation for parameters that are representative for the foreshock region of fast supernova remnant shocks. A dense ion beam and the electrons correspond to the upstream plasma and a fast ion beam to the shock-reflected ions. The purpose of the 2D simulation is to identify the nonlinear saturation mechanisms, the electron heating and potential secondary instabilities that arise from anisotropic electron heating and result in the growth of magnetic fields. We confirm that the instabilities between both ion beams and the electrons saturate by the formation of phase space holes by the beam-aligned modes. The slower oblique modes accelerate some electrons, but they cannot heat up the electrons significantly before they are trapped by the faster beam-aligned modes. Two circular electron velocity distributions develop, which are centred around the velocity of each ion beam. They develop due to the scattering of the electrons by the electrostatic wave potentials. The growth of magnetic fields is observed, but their amplitude remains low.
Resumo:
Aiming to establish a rigorous link between macroscopic random motion (described e.g. by Langevin-type theories) and microscopic dynamics, we have undertaken a kinetic-theoretical study of the dynamics of a classical test-particle weakly coupled to a large heat-bath in thermal equilibrium. Both subsystems are subject to an external force field. From the (time-non-local) generalized master equation a Fokker-Planck-type equation follows as a "quasi-Markovian" approximation. The kinetic operator thus defined is shown to be ill-defined; in specific, it does not preserve the positivity of the test-particle distribution function f(x, v; t). Adopting an alternative approach, previously introduced for quantum open systems, is proposed to lead to a correct kinetic operator, which yields all the expected properties. A set of explicit expressions for the diffusion and drift coefficients are obtained, allowing for modelling macroscopic diffusion and dynamical friction phenomena, in terms of an external field and intrinsic physical parameters.
Resumo:
A multivariate Fokker-Planck-type kinetic equation modeling a test - panicle weakly interacting with an electrostatic plasma. in the presence of a magnetic field B . is analytically solved in an Ornstein - Uhlenbeck - type approximation. A new set of analytic expressions are obtained for variable moments and panicle density as a function of time. The process is diffusive.
Resumo:
Research on fusion fast ignition (FI) initiated by laser-driven ion beams has made substantial progress in the last years. Compared with electrons, FI based on a beam of quasi-monoenergetic ions has the advantage of a more localized energy deposition, and stiffer particle transport, bringing the required total beam energy close to the theoretical minimum. Due to short pulse laser drive, the ion beam can easily deliver the 200 TW power required to ignite the compressed D-T fuel. In integrated calculations we recently simulated ion-based FI targets with high fusion gain targets and a proof of principle experiment [1]. These simulations identify three key requirements for the success of ion-driven fast ignition (IFI): (1) the generation of a sufficiently high-energetic ion beam (approximate to 400-500 MeV for C), with (2) less than 20% energy spread at (3) more than 10% conversion efficiency of laser to beam energy. Here we present for the first time new experimental results, demonstrating all three parameters in separate experiments. Using diamond nanotargets and ultrahigh contrast laser pulses we were able to demonstrate >500 MeV carbon ions, as well as carbon pulses with Delta E/E
Resumo:
Placing metallic nanoparticles inside cavities, rather than in dimers, greatly improves their plasmonic response. Such particle-in-cavity (PIC) hybrid architectures are shown to produce extremely strong field enhancement at the particle cavity junctions, arising from the cascaded focusing of large optical cross sections into small gaps. These simply constructed PIC structures produce the strongest field enhancement for coupled nanoparticles, up to 90% stronger than for a dimer. The coupling is found to follow a universal power law with particle surface separation, both for field enhancements and resonant wavelength shifts. Significantly enhanced Raman signals are experimentally observed for molecules adsorbed in such PIC structures, in quantitive agreement with theoretical calculations. PIC architectures may have important implications in many applications, such as reliable single molecule sensing and light harvesting in plasmonic photovoltaic devices.
Resumo:
We investigate the acceleration of particles by Alfven waves via the second-order Fermi process in the lobes of giant radio galaxies. Such sites are candidates for the accelerators of ultra-high-energy cosmic rays (UHECR). We focus on the nearby Fanaroff-Riley type I radio galaxy Centaurus A. This is motivated by the coincidence of its position with the arrival direction of several of the highest energy Auger events. The conditions necessary for consistency with the acceleration time-scales predicted by quasi-linear theory are reviewed. Test particle calculations are performed in fields which guarantee electric fields with no component parallel to the local magnetic field. The results of quasi-linear theory are, to an order of magnitude, found to be accurate at low turbulence levels for non-relativistic Alfven waves and at both low and high turbulence levels in the mildly relativistic case. We conclude that for pure stochastic acceleration via Alfven waves to be plausible as the generator of UHECR in Cen A, the baryon number density would need to be several orders of magnitude below currently held upper limits.
Resumo:
In supernova remnants, the nonlinear amplification of magnetic fields upstream of collisionless shocks is essential for the acceleration of cosmic rays to the energy of the "knee" at 10(15.5) eV. A nonresonant instability driven by the cosmic ray current is thought to be responsible for this effect. We perform two-dimensional, particle-in-cell simulations of this instability. We observe an initial growth of circularly polarized nonpropagating magnetic waves as predicted in linear theory. It is demonstrated that in some cases the magnetic energy density in the growing waves can grow to at least 10 times its initial value. We find no evidence of competing modes, nor of significant modification by thermal effects. At late times, we observe saturation of the instability in the simulation, but the mechanism responsible is an artifact of the periodic boundary conditions and has no counterpart in the supernova-shock scenario.
Resumo:
Phased DM transmitter array synthesis using particle swarm optimization (PSO) is presented in this paper. The PSO algorithm is described in details with key parameters provided for 1-D four-element half-wavelength spaced QPSK DM array synthesis. A DM transmitter array for boresight and 30º direction secure communications are taken as examples to validate the proposed synthesis approach. The optimization process exhibits good convergence performance and solution quality.
Modelling crack propagation in particle-reinforced composites using the element-free Galerkin method
Resumo:
Solid particle erosion is a major concern in the engineering industry, particularly where transport of slurry flow is involved. Such flow regimes are characteristic of those in alumina refinement plants. The entrainment of particulate matter, for example sand, in the Bayer liquor can cause severe erosion in pipe fittings, especially in those which redirect the flow. The considerable costs involved in the maintenance and replacement of these eroded components led to an interest in research into erosion prediction by numerical methods at Rusal Aughinish alumina refinery, Limerick, Ireland, and the University of Limerick. The first stage of this study focused on the use of computational fluid dynamics (CFD) to simulate solid particle erosion in elbows. Subsequently an analysis of the factors that affect erosion of elbows was performed using design of experiments (DOE) techniques. Combining CFD with DOE harnesses the computational power of CFD in the most efficient manner for prediction of elbow erosion. An analysis of the factors that affect the erosion of elbows was undertaken with the intention of producing an erosion prediction model. © 2009 Taylor & Francis.