227 resultados para Partially coherent beams
Resumo:
The feasibility of large-scale implementation of Li-air batteries (LABs) hinges on understanding the thermodynamic and kinetic factors that control charge-discharge rates, efficiency and life times. Here, the kinetics of bias-induced reactions is explored locally on the surface of Li-ion conductive glass ceramics, a preferred electrolyte for LABs, using direct current-voltage and strain spectroscopies. Above a critical bias, particle growth kinetics were found to be linear in both the bias and time domains. Partial reversibility was observed for Li particles as evidenced by the presence of anodic peaks following the Li(+) reduction, as well an associated reduction in particle height. The degree of reversibility was highest for the smallest particles formed. These observations thus suggest the possibility of producing nanobatteries with an active anode volume of the order of 0.1 al.
Resumo:
Extreme ultraviolet (XUV) and X-ray harmonic spectra produced by intense laser-solid interactions have, so far, been consistent with Doppler upshifted reflection from collective relativistic plasma oscillations-the relativistically oscillating mirror mechanism(1-6). Recent theoretical work, however, has identified a new interaction regime in which dense electron nanobunches are formed at the plasma-vacuum boundary resulting in coherent XUV radiation by coherent synchrotron emission(7,8) (CSE). Our experiments enable the isolation of CSE from competing processes, demonstrating that electron nanobunch formation does indeed occur. We observe spectra with the characteristic spectral signature of CSE-a slow decay of intensity, I, with high-harmonic order, n, as I(n) proportional to n(-1.62) before a rapid efficiency rollover. Particle-in-cell code simulations reveal how dense nanobunches of electrons are periodically formed and accelerated during normal-incidence interactions with ultrathin foils and result in CSE in the transmitted direction. This observation of CSE presents a route to high-energy XUV pulses(7,8) and offers a new window on understanding ultrafast energy coupling during intense laser-solid density interactions.
Resumo:
Reinforced concrete (RC) beams may be strengthened for shear using externally bonded fiber reinforced polymer (FRP) composites in the form of side bonding, U-jacketing or complete wrapping. The shear failure of almost all RC beams shear-strengthened with side bonded FRP and the majority of those strengthened with FRP U-jackets, is due to debonding of the FRP. The bond behavior between the externally-bonded FRP reinforcement (referred to as FRP strips for simplicity) and the concrete substrate therefore plays a crucial role in the failure process of these beams. Despite extensive research in the past decade, there is still a lack of understanding of how debonding of FRP strips in such a beam propagates and how the debonding process affects its shear behavior. This paper presents an analytical study on the progressive debonding of FRP strips in such strengthened beams. The complete debonding process is modeled and the contribution of the FRP strips to the shear capacity of the beam is quantified. The validity of the analytical solution is verified by comparing its predictions with numerical results from a finite element analysis. This analytical treatment represents a significant step forward in understanding how interaction between FRP strips, steel stirrups and concrete affects the shear resistance of RC beams shear-strengthened with FRP strips.
Resumo:
RC beams shear strengthened with externally bonded fiber-reinforced polymer (FRP) U strips or side strips usually fail owing to debonding of the bonded FRP shear reinforcement. Because such debonding usually occurs in a brittle manner at relatively small shear crack widths, some of the internal steel stirrups intersected by the critical shear crack may not have reached yielding at beam shear failure. Consequently, the yield stress of internal steel stirrups in such a strengthened RC beam cannot be fully utilized. This adverse shear interaction between the internal steel shear reinforcement and the external FRP shear reinforcement may significantly reduce the benefit of the shear strengthening FRP but has not been considered explicitly by any of the shear strength models in the existing design guidelines. This paper presents a new shear strength model considering this adverse shear interaction through the introduction of a shear interaction factor. A comprehensive evaluation of the proposed model, as well as three other shear strength models, is conducted using a large test database. It is shown that the proposed shear strength model performs the best among the models compared, and the performance of the other shear strength models can be significantly improved by including the proposed shear interaction factor. Finally, a design recommendation is presented.