215 resultados para Oxygen.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transient absorption spectroscopy (TAS) has been used to study the interfacial electron-transfer reaction between photogenerated electrons in nanocrystalline titanium dioxide (TiO2) films and molecular oxygen. TiO2 films from three different starting materials (TiO2 anatase colloidal paste and commercial anatase/rutile powders Degussa TiO2 P25 and VP TiO2 P90) have been investigated in the presence of ethanol as a hole scavenger. Separate investigations on the photocatalytic oxygen consumption by the films have also been performed with an oxygen membrane polarographic detector. Results show that a correlation exists between the electron dynamics of oxygen consumption observed by TAS and the rate of oxygen consumption through the photocatalytic process. The highest activity and the fastest oxygen reduction dynamics were observed with films fabricated from anatase TiO2 colloidal paste. The use of TAS as a tool for the prediction of the photocatalytic activities of the materials is discussed. TAS studies indicate that the rate of reduction of molecular oxygen is limited by interfacial electron-transfer kinetics rather than by the electron trapping/detrapping dynamics within the TiO2 particles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The initial kinetics of the oxidation of 4-chlorophenol, 4-CP, photocatalyzed by titania films and aqueous dispersions were studied as a function of oxygen partial pressure, P-O2, and incident light intensity, I. The reaction conditions were such that the kinetics were independent of [4-CP] but strongly dependent on PO2-a situation that allowed investigation of the less-often studied kinetics of oxygen reduction. The observed kinetics fit a pseudo-steady-state model in which the oxygen is Langmuir-adsorbed on the titania photocatalyst particles before being reduced by photogenerated electrons. The maximum rate of photocatalysis depends directly on I-beta, where, beta = 1 for films and 0.7 for dispersions of titania, indicating that the kinetics are dominated by the surface reactions of the photogenerated electrons and holes for the films and by direct recombination for the powder dispersions. Using the pseudo-first-order model, for both titania films and dispersions, the apparent Langmuir adsorption constant, K-LH, derived from a Langmuir-Hinshelwood analysis of the kinetics, appears to be largely independent of incident light intensity, unlike KLH for 4-CP Consequently, similar values are obtained for the Langmuir adsorption constant, K-ads, extracted from a pseudosteady-state analysis of the kinetics for oxygen on TiO2 dispersions and films in aqueous solution (i.e., ca. 0.0265 +/- 0.005 kPa(-1)), and for both films and dispersions, oxygen appears to be weakly adsorbed on TiO2 compared with 4-CP, at a rate that would take many minutes to reach equilibrium. The value of Kads for oxygen on titania particles dispersed in solution is ca. 4.7 times lower than that reported for the dark Langmuir adsorption isotherm; possible causes for this difference are discussed. (c) 2006 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The preparation of a novel, flexible, photocatalytic, oxygen-scavenging polymer film is described. The film incorporates nanocrystalline titania particles in an ethyl cellulose polymer film, with or without an added sacrificial electron donor of triethanolamine. When coated on the inside of a glass vessel its UV-driven light-scavenging action is demonstrated by platinum octaethyl porphyrin coated glass beads sealed inside, since their luminescence increases with increasing UV-irradiation time. When used as a flexible film, work with an oxygen electrode shows that the film is able to scavenge oxygen at an average rate of 0.017 cm(3) O-2 h(-1) cm(-2) over a 24 h period, which compares favourably to other, well-established oxygen-scavenger systems. The potential of using such as system for oxygen scavenging in packaging is discussed briefly. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The detection of oxygen using optical sensors is of increasing interest, especially in modified atmosphere food packaging (MAP), in which the package, usually containing food, is flushed with a gas, such as carbon dioxide or nitrogen. This tutorial review examines the ideal properties of an oxygen optical sensor for MAP and compares them with those developed to date, including the most recent advances. The basic technologies underpinning the different indicator types are described, examples given and their potential for application in MAP assessed. This tutorial review should be of interest to the MAP industry and researchers in optical sensors and oxygen sensing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Freestanding films containing nanocrystalline TiO2 and a suitable electron donor embedded in a cellulose matrix deoxygenate a closed environment (see Figure) upon UV illumination as a result of the photocatalytic properties of TiO2. This opens up the potential use of semiconductor photocatalysis in active packaging to achieve light-driven deoxygenation of closed environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The results of a detailed characterization study of a novel UV-activated colorimetric oxygen indicator are described. The indicator uses nanoparticles of titania to photosensitize the reduction of methylene blue by triethanolamine in a polymer encapsulation medium, using UVA light. Upon UV irradiation, the indicator bleaches and remains in this colorless state in the dark, unless and until it is exposed to oxygen, whereupon its original color is restored. The indicator is reusable and irreversible. The rate of color recovery is proportional to the level of oxygen present. A layer of PET (poly(ethylene terephthalate)), of thickness b, placed on top of the indicator film slows down its response, and the 90% recovery time is proportional to b.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A generic ink formulation is described, comprising semiconductor photocatalyst particles, a brightly-coloured redox dye, a mild reducing agent, a polymer and a solvent, that creates an irreversible, reusable, UV-light-activated, colorimetric indicator or intelligence ink for oxygen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate that UV illumination of nanocrystalline TiO2 films in the presence of excess organic hole scavengers can result in the deoxygenation of a closed environment. The kinetics of deoxygenation are investigated under continuous UV illumination as a function of film preparation and hole scavenger employed. Optimum deoxygenation is observed using methanol as a hole scavenger, although efficient deoxygenation is also observed for a range of different polymer/TiO2 nanocomposite films deposited on glass and plastic substrates. Transient absorption spectroscopy is used to probe the kinetics of the deoxygenation reaction, focusing on the kinetics of the reduction of oxygen by photogenerated TiO2 electrons. Under aerobic conditions, this oxygen reduction reaction is observed to exhibit first order kinetics with a rate constant of 70 s(-1), more than one order of magnitude faster than alternative reaction pathways for the photogenerated electrons. These observations are discussed in terms of the Langmuir-Hinshelwood equation for photocatalytic action. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The features of two popular models used to describe the observed response characteristics of typical oxygen optical sensors based on luminescence quenching are examined critically. The models are the 'two-site' and 'Gaussian distribution in natural lifetime, tau(o),' models. These models are used to characterise the response features of typical optical oxygen sensors; features which include: downward curving Stern-Volmer plots and increasingly non-first order luminescence decay kinetics with increasing partial pressures of oxygen, pO(2). Neither model appears able to unite these latter features, let alone the observed disparate array of response features exhibited by the myriad optical oxygen sensors reported in the literature, and still maintain any level of physical plausibility. A model based on a Gaussian distribution in quenching rate constant, k(q), is developed and, although flawed by a limited breadth in distribution, rho, does produce Stern-Volmer plots which would cover the range in curvature seen with real optical oxygen sensors. A new 'log-Gaussian distribution in tau(o) or k(q)' model is introduced which has the advantage over a Gaussian distribution model of placing no limitation on the value of rho. Work on a 'log-Gaussian distribution in tau(o)' model reveals that the Stern-Volmer quenching plots would show little degree in curvature, even at large rho values and the luminescence decays would become increasingly first order with increasing pO(2). In fact, with real optical oxygen sensors, the opposite is observed and thus the model appears of little value. In contrast, a 'log-Gaussian distribution in k(o)' model does produce the trends observed with real optical oxygen sensors; although it is technically restricted in use to those in which the kinetics of luminescence decay are good first order in the absence of oxygen. The latter model gives a good fit to the major response features of sensors which show the latter feature, most notably the [Ru(dpp)(3)(2+)(Ph4B-)(2)] in cellulose optical oxygen sensors. The scope of a log-Gaussian model for further expansion and, therefore, application to optical oxygen sensors, by combining both a log-Gaussian distribution in k(o) with one in tau(o) is briefly discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The quenching of the electronically-excited, lumophoric state of [Ru(bpy)(3)(2+)(Ph4B-)(2)] by oxygen is studied in a wide variety of neat plasticizers. The Stern-Volmer constant, K-SV, is found to be inversely dependent upon the viscosity of the quenching medium, although the natural lifetime of the electronically excited state of [RU(bPY)(3)(2+)(Ph4B-)(2)] is largely independent of medium. The least viscous of the plasticizers tested, triethyl phosphate, did not, however, produce highly sensitive optical oxygen sensors when used to plasticize [RU(bPY)(3)(2+)(Ph4B-)(2)]-containing cellulose acetate butyrate (CAB) and poly(methyl methacrylate) (PMMA) films, Instead, the compatibility of the polymer-plasticizer combination, as measured by the difference in the values of the solubility parameter of the two, appears to be a major factor in determining the overall oxygen sensitivity of the thin plastic films. For highly compatible polymer-plasticizer combinations, the plasticizer with the lowest viscosity produces films of the highest oxygen sensitivity. This situation arises because in the film the quenching process is partly diffusion-controlled and, as a result, the quenching rate constant is inversely proportional to the effective viscosity of the reaction medium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two porphyrins, platinum(II) octaethylporphyrin (Pt-OEP) and palladium(II) octaethylporphyrin (Pd-OEP), are incorporated into a wide variety of different encapsulating matricies and tested as oxygen sensors, The excited state lifetimes of the two porphyrins are quite different, 0.091 ms for Pt-OEP and 0.99 ms for Pd-OEP, and Pt-OEP-based oxygen sensors are found to be much less sensitive than Pd-OEP-based ones to quenching by oxygen, Two major response characteristics of an oxygen sensor are (i) its sensitivity toward oxygen and (ii) its response and recovery times when exposed to an alternating atmosphere of nitrogen and air. The response characteristics of a rang of Pt-OEP, and Pd-OEP-based oxygen sensors were determined using cellulose acetate butyrate (CAB), poly(methyl methacrylate) (PMMA), and PMMA/CAB polymer blends as the encapsulating media. Pt-OEP and Pd-OEP oxygen sensors have better response characteristics (i.e., more sensitive and lower response and recovery times) when CAB is used as the encapsulating medium rather than PMMA. For both Pt-OEP- and Pd-OEP-based oxygen sensors, in either polymer, increasing the level of tributyl phosphate plasticizer improves the response characteristics of the final oxygen-sensitive film. Pt-OEP in different unplasticized PMMA/CAB blended films produced a range of oxygen sensors in which the response characteristics improved with increasing level of CAB present.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Different luminescent, hydrophillic ruthenium diimine cationic complexes are rendered soluble in the hydrophobic medium of a plasticised polymer through ion-pair coupling with a hydrophobic anion, such as tetraphenyl berate. Based on this approach, a number of different oxygen sensitive films, i.e., luminescent, thin plastic films which respond to oxygen-the latter quenches the luminescence were prepared, using the polymer, cellulose acetate, plasticised with tributylphosphate. Of the resultant thin oxygen sensitive films tested, the one containing the luminescent ion-pair ruthenium (II) tris(4,7-diphenyl-1,IO-phenanthroline) ditetraphenyl berate, [Ru(dpp)(3)(2+)(Ph4B-)(2)], was found to be the most sensitive, and its response characteristics were subsequently studied as a function of plasticiser content, temperature and stability in use, and with age. The major response characteristics, i.e., film sensitivity towards oxygen and response and recovery times, depend very strongly upon the overall level of plasticiser present in film; the film is more sensitive and faster in response and recovery the greater the level of plasticiser employed. Thus, the response of the film towards oxygen can be tuned by varying the level of plasticiser in the film. Film sensitivity towards oxygen is largely independent on temperature, whereas its response and recovery times decrease with increasing temperature (E-a = -10.3+/-0.4 kJ mol(-1)). The sensitivity of a typical luminescent film is very stable when used continuously over a 24-h period, decreases by ca. 20% with age when stored at ambient temperature over a period of 29 days, but very little over the same period of time when stored in the freezer section of a fridge. (C) 1997 Elsevier Science S.A.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of two gold compounds incorporated into thin plastic films as luminescence quenching oxygen sensors is described. The films are sensitive both to gaseous oxygen and to oxygen dissolved in nonaqueous media such as ethanol. The luminescence quenching of these sensors by oxygen obeys the Stern-Volmer equation and Stern-Volmer constants of 5.35 x 10(-3) and 0.9 x 10(-3) Torr(-1) are found, respectively, for the two dyes in a polystyrene polymer matrix. The sensitivity of the films is strongly influenced by the nature of the polymer matrix, and greatest sensitivity was found in systems based an the polymers polystyrene or cellulose acetate butyrate. Sensitivity was not found to be temperature dependent though raising the temperature hom 15 to 50 degrees C did result in a slight decrease in emission intensity and a hypsochromic shift in the emission wavelength. The rate of response and recovery of the sensors can be increased either by decreasing film thickness or by increasing the operating temperature. The operational and storage stability of these films is generally good though exposure to light should be avoided as one of the dyes tends to undergo photobleaching probably due to a photoinduced ligand substitution reaction.