135 resultados para Ovarian stimulation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIMS: Adult granulosa cell tumours (AGCTs) are uncommon ovarian sex cord-stromal tumours which recur following surgical removal in up to 50% of patients. Treatment options for recurrent and advanced stage AGCTs are limited, with poor response to chemotherapy and radiotherapy. We aimed to assess epidermal growth factor receptor (EGFR), HER2 and insulin-like growth factor-1 receptor (IGF-1R) status in AGCTs with a view to investigating whether or not these receptors might be potential therapeutic targets in these neoplasms.

METHODS AND RESULTS: Immunohistochemical staining for EGFR, HER2 and IGF-1R was undertaken in 31 AGCTs. Tumour DNA was also analysed for mutations in the tyrosine kinase domain of EGFR (exons 18-21) by Cobas mutation RT-PCR. Twenty-three of 31 (74%) AGCTs showed some degree of EGFR expression, generally with cytoplasmic or mixed membranous and cytoplasmic staining of variable intensity. Eleven of 27 (41%) cases exhibited strong membranous and cytoplasmic expression of IGF-1R. HER2 expression was not seen. No mutations were found in exons 18-21 of the EGFR gene in hot-spots of therapeutic relevance.

CONCLUSIONS: This study raises the possibility that anti-EGFR and/or anti-IGF-1R therapies may be of potential benefit in ovarian AGCTs, and this requires further study. Lack of known mutations within the tyrosine kinase domain of EGFR suggests that EGFR-related tyrosine kinase inhibitors may not be useful therapeutically.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ovarian carcinoma (OC) is the most lethal of the gynecological malignancies, often presenting at an advanced stage. Treatment is hampered by high levels of drug resistance. The taxanes are microtubule stabilizing agents, used as first-line agents in the treatment of OC that exert their apoptotic effects through the spindle assembly checkpoint. BUB1-related protein kinase (BUBR1) and mitotic arrest deficient 2 (MAD2), essential spindle assembly checkpoint components, play a key role in response to taxanes. BUBR1, MAD2, and Ki-67 were assessed on an OC tissue microarray platform representing 72 OC tumors of varying histologic subtypes. Sixty-one of these patients received paclitaxel and platinum agents combined; 11 received platinum alone. Overall survival was available for all 72 patients, whereas recurrence-free survival (RFS) was available for 66 patients. Increased BUBR1 expression was seen in serous carcinomas, compared with other histologies (P = .03). Increased BUBR1 was significantly associated with tumors of advanced stage (P = .05). Increased MAD2 and BUBR1 expression also correlated with increased cellular proliferation (P < .0002 and P = .02, respectively). Reduced MAD2 nuclear intensity was associated with a shorter RFS (P = .03), in ovarian tumors of differing histologic subtype (n = 66). In this subgroup, for those women who received paclitaxel and platinum agents combined (n = 57), reduced MAD2 intensity also identified women with a shorter RFS (P < .007). For the entire cohort of patients, irrespective of histologic subtype or treatment, MAD2 nuclear intensity retained independent significance in a multivariate model, with tumors showing reduced nuclear MAD2 intensity identifying patients with a poorer RFS (P = .05).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Annually, ovarian cancer (OC) affects 240,000 women worldwide and is the most lethal gynecological malignancy. High-grade serous OC (HGSOC) is the most common and aggressive OC subtype, characterized by widespread genome changes and chromosomal instability and is consequently poorly responsive to chemotherapy treatment. The objective of this study was to investigate the role of the microRNA miR-433 in the cellular response of OC cells to paclitaxel treatment. We show that stable miR-433 expression in A2780 OC cells results in the induction of cellular senescence demonstrated by morphological changes, downregulation of phosphorylated retinoblastoma (p-Rb), and an increase in β-galactosidase activity. Furthermore, in silico analysis identified four possible miR-433 target genes associated with cellular senescence: cyclin-dependent kinase 6 (CDK6), MAPK14, E2F3, and CDKN2A. Mechanistically, we demonstrate that downregulation of p-Rb is attributable to a miR-433-dependent downregulation of CDK6, establishing it as a novel miR-433 associated gene. Interestingly, we show that high miR-433 expressing cells release miR-433 into the growth media via exosomes which in turn can induce a senescence bystander effect. Furthermore, in relation to a chemotherapeutic response, quantitative real-time polymerase chain reaction (qRT-PCR) analysis revealed that only PEO1 and PEO4 OC cells with the highest miR-433 expression survive paclitaxel treatment. Our data highlight how the aberrant expression of miR-433 can adversely affect intracellular signaling to mediate chemoresistance in OC cells by driving cellular senescence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Annually, ovarian cancer (OC) affects 240,000 women worldwide and is the most lethal gynaecological malignancy. Such mortality is predominantly associated with the development of an intrinsic and acquired resistance to chemotherapy, the lack of targeted therapies and the lack of biomarkers predicting therapeutic response.

Our clinical data demonstrates that increased miR-433 expression in primary high grade serous OC (HGSOCs) is significantly associated with poor PFS (n=46, p=0.024). Interestingly, the IHC analysis of two miR-433 targets: MAD2 [Furlong et al., 2012 PMID:22069160] and HDAC6 shows that low IHC levels of both proteins is also significantly associated with worse outcome (p=0.002 and 0.002 respectively; n=43). Additionally, the analysis of miR 433 in the publicly available TCGA dataset corroborates that high miR-433 is significantly correlated with worse OS for patients presenting with OC (n=558 and p=0.027). In vitro, in a panel of OC cell lines, higher miR-433 and lower MAD2 and HDAC6 levels were associated with resistance to paclitaxel.

To further investigate the role of miR-433 in the cellular response to chemotherapy, we generated an OC cell line stably expressing miR-433, or miR-control. MTT viability assays and Western Blot analyses established that miR-433 cells were more resistant to paclitaxel treatment (50nM) compared to miR-controls. Importantly, we have shown for the first time that miR 433 induced senescence, exemplified by a flattened morphology and down-regulation of phosphorylated Retinoblastoma (p-Rb), a molecular marker of senescence. Surprisingly, miR 433 induced senescence was independent from two well recognised senescent drivers: namely p53/p21 and p16. To explore this further we performed an in silico analysis of seven microRNA platforms which indicated that miR 433 potentially targets Cyclin-dependent kinase CDK6, which promotes sustained phosphorylation of Rb and thus cell cycle progression. In vitro, the overexpression of pre-miR-433 resulted in diminished CDK6 expression demonstrating a novel interaction between miR-433 and CDK6.

In conclusion, this study demonstrates that high miR-433 expression predicts poor outcome in OC patients by putatively rendering OC cells resistant to paclitaxel treatment through the induction of cellular senescence identifying this microRNA as a potential marker of chemoresponse.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background:
Ovarian cancer is the fifth leading cause of cancer in women and has poor
long-term survival, in part, due to chemoresistance. Tumour hypoxia is associated with
chemoresistance in ovarian cancer. However, relatively little is known about the genes
activated in ovarian cancer which cause chemoresistance due to hypoxia. This study
aimed to firstly identify genes whose expression is associated with hypoxia-induced
chemoresistance, and secondly select hypoxia-associated biomarkers and evaluate their
expression in ovarian tumours.
Design:
Cisplatin-sensitive (A2780) and cisplatin-resistant (A2780cis) ovarian cancer
cell lines were exposed to combinations of hypoxia and/or cisplatin as part of a matrix
designed to reflect clinically relevant scenarios. RNA was extracted and interrogated
on Affymetrix Human Gene arrays. Differential gene expression was analysed for cells
exposed to hypoxia and/or treated with cisplatin. Potential markers of chemoresistance
were selected for evaluation in a cohort of ovarian tumour samples by R
T-PCR.
Results:
A wide range of genes associated with chemoresistance were differentially
expressed in cells exposed to hypoxia and/or cisplatin. Selected genes [ANGPTL4,
HER3 and HIF-1
α
] were chosen for further validation in a cohort of ovarian tumour
samples. High expression of ANGPTL4 trended towards reduced progression-free and
overall survival. High expression of HER3 trended to increased progression-free but
reduced overall survival, while high expression of HIF-1
α
trended towards reduced
progression-free and increased overall survival.
Conclusions:
In conclusion, this study has further characterized the relationship between
hypoxia and chemoresistance in an ovarian cancer model. We have also identified many
potential biomarkers of hypoxia and platinum resistance and provided initial validation
of a subset of these markers in ovarian cancer tissues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epithelial ovarian carcinoma (EOC) is characterised by late diagnosis and recurrences, both of which contribute to the high morbidity and mortality of this cancer. Unfortunately, EOC has an innate susceptibility to become chemo-resistant. Specifically, up to 30% of patients may not respond to current standard chemotherapy (paclitaxel and platinum in combination) and of those who have an initial response, some patients relapse within a few months. Therefore, in order to improve patient outcome it is crucial to establish what factors influence a patients' individualised response to chemotherapy. We analysed MAD2 protein expression in a patient cohort of 35 ovarian tumours and a panel of 5 ovarian cancer cell lines. We have demonstrated that low nuclear MAD2 expression intensity was significantly associated with chemo-resistant ovarian tumours (p=0.0136). Moreover, in vitro studies of the 5 ovarian cancer cell lines revealed that reduced MAD2 expression was associated with paclitaxel resistance. In silico analysis identified a putative miR-433 binding domain in the MAD2 3′UTR and expression profiling of miR-433 in the ovarian cancer cell lines showed that low MAD2 protein expression was associated with high miR-433 levels. In vitro over-expression of miR-433 attenuated MAD2 protein expression with a concomitant increase in cellular resistance to paclitaxel. Over-expression of a morpholino oligonucleotide that blocks miR-433 binding to MAD2 3′UTR stabilised MAD2 protein expression and protects from miR-433 induced degradation. Furthermore, miR-433 expression analysis in 35 ovarian tumour samples revealed that high miR-433 expression was associated with advanced stage presentations (p=0.0236). In conclusion, ovarian tumours that display low nuclear MAD2 intensity are chemo-resistant and stabilising MAD2 expression by antagonising miR-433 activity is a potential mechanism for restoring chemo-responsiveness in these tumours.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Annually, ovarian cancer (OC) affects 240,000 women worldwide and is the most lethal gynaecological malignancy. Such mortality is predominantly associated with the development of an intrinsic and acquired resistance to chemotherapy, the lack of targeted therapies and the lack of biomarkers predicting response to standard treatment.

Our clinical data demonstrates that increased miR-433 expression in primary high grade serous OC (HGSOCs) is significantly associated with poor PFS (n=46, p=0.024). Interestingly, the IHC analysis of two miR-433 targets: MAD2 [1] and HDAC6 shows that low IHC levels of both proteins is also significantly associated with worse outcome (p=0.002 and 0.002 respectively; n=43). Additionally, the analysis of miR 433 in the publicly available TCGA dataset corroborates that high miR-433 is significantly correlated with worse OS for patients presenting with OC (n=558 and p=0.027). In vito, in a panel of OC cell lines, higher miR-433 and lower MAD2 and HDAC6 levels were associated with resistance to paclitaxel.

To further investigate the role of miR-433 in the cellular response to chemotherapy, we generated an OC cell line stably expressing miR-433 or miR-control. MTT viability assays and Western Blot analyses established that miR-433 cells were more resistant to paclitaxel treatment (50nM) compared to miR-controls. Importantly, we have shown for the first time that miR 433 induced senescence resulting in a chracteristic flattened morphology and down-regulation of phosphorylated Retinoblastoma (p Rb), a molecular marker of senescence. Surprisingly, miR 433 induced senescence was independent from two well recognised senescent drivers: namely p53/p21 and p16. To explore this further we performed an in silico analysis of seven microRNA platforms which indicated that miR 433 potentially targets Cyclin-dependent kinase CDK6, which promotes sustained phosphorylation of Rb and thus cell cycle progression. In vitro, the overexpression of pre-miR-433 resulted in diminished CDK6 expression demonstrating a novel interaction between miR-433 and CDK6.

In conclusion, this study demonstrates that high miR-433 expression predicts poor outcome in OC patients by putatively rendering OC cells resistant to paclitaxel treatment through the induction of cellular senescence identifying this microRNA as a potential marker of chemoresponse.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An understanding of the mechanisms underlying the development of resistance to chemotherapy treatment is a gateway to the introduction of novel therapies and improved outcomes for women presenting with ovarian cancer (OC). The desired apoptotic death post-chemotherapy depends on an intact and fully functioning cell cycle machinery.

In this study we demonstrate that stable expression of miR-433 renders OC cells more resistant to paclitaxel treatment. Interestingly, only cells with the highest miR-433 survived paclitaxel suggesting the possible role of miR-433 in cancer recurrence. Importantly, for the first time we demonstrate that miR 433 induces cellular senescence, exemplified by a flattened morphology, the downregulation of phosphorylated Retinoblastoma (p Rb) and increased β galactosidase activity. Surprisingly, miR 433 induced senescence was independent of two well recognised senescent drivers: p21 and p16. Further in silico analysis followed by in vitro experiments identified CKD6 as a novel miR-433 target gene possibly explaining the observed p21 and p16-independent induction of cellular senescence. Another in silico identified miR-433 target gene was CDC27, a protein involved in the regulation of the cell cycle during mitosis. We demonstrate that the overexpression of pre-miR-433 leads to the downregulation of CDC27 in vitro revealing a novel interaction between miR-433 and CDC27, an integral cell cycle regulating protein.

Interestingly, miR-433 expressing cells also demonstrated an ability to impact their tumour microenvironment. We show that miR-433 is present in exosomes released from miR-433 overexpressing and high miR-433 naïve cells. Moreover, growth condition media (GCM) harvested from cells with high miR-433 have higher levels of IL-6 and IL-8, two key cytokines involved in the senescence associated secretory phenotype (SASP). Importantly, GCM from miR-433-enriched cells repressed the growth of co-cultured cells with initial studies showing a GCM-dependent induction of chemoresistance.

In conclusion, data in this study highlights how the aberrant expression miR-433 contributes to chemoresistance in OC cells. We postulate that standard chemotherapy, particularly paclitaxel, used to treat women with OC may have an attenuated ability to kill cells harbouring increased levels of miR-433, allowing for a subsequent chemoresistant phenotype post-therapy.