149 resultados para Oil-contaminated


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Compared to other cereals, rice has particular strong As accumulation. Therefore, it is very important to understand As uptake and translocation among different genotypes. A field study in Chenzhou city, Hunan province of China, was employed to evaluate the effect of arsenic-contaminated soil on uptake and distribution in 34 genotypes of rice (including unpolished rice, husk, shoot, and root). The soil As concentrations ranged from 52.49 to 83.86 mg kg-1, with mean As concentration 64.44 mg kg-1. The mean As concentrations in rice plant tissues were different among the 34 rice genotypes. The highest As concentrations were accumulated in rice root (196.27-385.98 mg kg-1 dry weight), while the lowest was in unpolished rice (0.31-0.52 mg kg-1 dry weight). The distribution of As in rice tissue and paddy soil are as follows root » soil > shoot > husk > unpolished rice. The ranges of concentrations of inorganic As in all of unpolished rice were from 0.26 to 0.52 mg kg-1 dry weight. In particular, the percentage of inorganic As in the total As was more than 67 %, indicating that the inorganic As was the predominant species in unpolished rice. The daily dietary intakes of inorganic As in unpolished rice ranged from 0.10 to 0.21 mg for an adult, and from 0.075 to 0.15 mg for a child. Comparison with tolerable daily intakes established by FAO/WHO, inorganic As in most of unpolished rice samples exceeded the recommended intake values. The 34 genotypes of rice were classified into four clusters using a criteria value of rescaled distance between 5 and 10. Among the 34 genotypes, the genotypes II you 416 (II416) with the lowest enrichment of As and the lowest daily dietary intakes of inorganic As could be selected as the main cultivar in As-contaminated field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Colloidal gas aphron dispersions (CGAs) can be described as a system of microbubbles suspended homogenously in a liquid matrix. This work examines the performance of CGAs in comparison to surfactant solutions for washing low levels of arsenic from an iron rich soil. Sodium Dodecyl Sulfate (SDS) and saponin, a biodegradable surfactant, obtained from Sapindus mukorossi or soapnut fruit were used for generating CGAs and solutions for soil washing. Column washing experiments were performed in down-flow and up flow modes at a soil pH of 5 and 6 using varying concentration of SDS and soapnut solutions as well as CGAs. Soapnut CGAs removed more than 70% arsenic while SDS CGAs removed up to 55% arsenic from the soil columns in the soil pH range of 5–6. CGAs and solutions showed comparable performances in all the cases. CGAs were more economical since it contains 35% of air by volume, thereby requiring less surfactant. Micellar solubilization and low pH of soapnut facilitated arsenic desorption from soil column. FT-IR analysis of effluent suggested that soapnut solution did not interact chemically with arsenic thereby facilitating the recovery of soapnut solution by precipitating the arsenic. Damage to soil was minimal arsenic confirmed by metal dissolution from soil surface and SEM micrograph.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Refined vegetable oils are widely used in the food industry as ingredients or components in many processed food products in the form of oil blends. To date, the generic term 'vegetable oil' has been used in the labelling of food containing oil blends. With the introduction of new EU Regulation for Food Information (1169/2011) due to take effect in 2014, the oil species used must be clearly identified on the package and there is a need for development of fit for purpose methodology for industry and regulators alike to verify the oil species present in a product. The available methodologies that may be employed to authenticate the botanical origin of a vegetable oil admixture were reviewed and evaluated. The majority of the sources however, described techniques applied to crude vegetable oils such as olive oil due to the lack of refined vegetable oil focused studies. Nevertheless, DNA based typing methods and stable isotopes procedures were found not suitable for this particular purpose due to several issues. Only a small number of specific chromatographic and spectroscopic fingerprinting methods in either targeted or untargeted mode were found to be applicable in potentially providing a solution to this complex authenticity problem. Applied as a single method in isolation, these techniques would be able to give limited information on the oils identity as signals obtained for various oil types may well be overlapping. Therefore, more complex and combined approaches are likely to be needed to identify the oil species present in oil blends employing a stepwise approach in combination with advanced chemometrics. Options to provide such a methodology are outlined in the current study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Identification of adulteration in mechanically extracted oils or the botanical origin of refined vegetable oil blends can be effectively achieved through the combination of spectroscopic methods and chemometric techniques. Chromatographic methods remain highly relevant but suffer from various limitations which derive from natural compositional variation. Modern multivariate techniques have demonstrated that it is possible to identify patterns and effectively classify unknown samples in both cases. Development of robust analytical methodologies requires however vigorous validation. Spectroscopic methods combined with chemometric techniques lack established validation protocols and this might hinder their use by law enforcement authorities. 

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents the possibility of optimising 3D Organised Mesoporous Silica (OMS) coated with both iron and aluminium oxides for the optimal removal of As(III) and As(V) from synthetic contaminated water. The materials developed were fully characterised and were tested for removing arsenic in batch experiments. The effect of total Al to Fe oxides coating on the selective removal of As(III) and As(V) was studied. It was shown that 8% metal coating was the optimal configuration for the coated OMS materials in removing arsenic. The effect of arsenic initial concentration and pH, kinetics and diffusion mechanisms was studied, modelled and discussed. It was shown that the advantage of an organised material over an un-structured sorbent was very limited in terms of kinetic and diffusion under the experimental conditions. It was shown that physisorption was the main adsorption process involved in As removal by the coated OMS. Maximum adsorption capacity of 55 mg As(V).g-1 was noticed at pH 5 for material coated with 8% Al oxides while 35 mg As(V).g-1 was removed at pH 4 for equivalent material coated with Fe oxides.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

13.Vidovic M., Miljus M., Vlajic J., (2002), "Risk minimization in logistic processes with oil products", Proceedings of the 6th International Conference on Traffic Science, ICTS 2002, Portorož, Slovenia, pp. 568-577;

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lead (Pb) is a non-threshold toxin capable of inducing toxic effects at any blood level but availability of soil screening criteria for assessing potential health risks is limited. The oral bioaccessibility of Pb in 163 soil samples was attributed to sources through solubility estimation and domain identification. Samples were extracted following the Unified BARGE Method. Urban, mineralisation, peat and granite domains accounted for elevated Pb concentrations compared to rural samples. High Pb solubility explained moderate-high gastric (G) bioaccessible fractions throughout the study area. Higher maximum G concentrations were measured in urban (97.6 mg kg−1) and mineralisation (199.8 mg kg−1) domains. Higher average G concentrations occurred in mineralisation (36.4 mg kg−1) and granite (36.0 mg kg−1) domains. Findings suggest diffuse anthropogenic and widespread geogenic contamination could be capable of presenting health risks, having implications for land management decisions in jurisdictions where guidance advises these forms of pollution should not be regarded as contaminated land.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The adulteration of extra virgin olive oil with other vegetable oils is a certain problem with economic and health consequences. Current official methods have been proved insufficient to detect such adulterations. One of the most concerning and undetectable adulterations with other vegetable oils is the addition of hazelnut oil. The main objective of this work was to develop a novel dimensionality reduction technique able to model oil mixtures as a part of an integrated pattern recognition solution. This final solution attempts to identify hazelnut oil adulterants in extra virgin olive oil at low percentages based on spectroscopic chemical fingerprints. The proposed Continuous Locality Preserving Projections (CLPP) technique allows the modelling of the continuous nature of the produced in house admixtures as data series instead of discrete points. This methodology has potential to be extended to other mixtures and adulterations of food products. The maintenance of the continuous structure of the data manifold lets the better visualization of this examined classification problem and facilitates a more accurate utilisation of the manifold for detecting the adulterants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

European Regulation 1169/2011 requires producers of foods that contain refined vegetable oils to label the oil types. A novel rapid and staged methodology has been developed for the first time to identify common oil species in oil blends. The qualitative method consists of a combination of a Fourier Transform Infrared (FTIR) spectroscopy to profile the oils and fatty acid chromatographic analysis to confirm the composition of the oils when required. Calibration models and specific classification criteria were developed and all data were fused into a simple decision-making system. The single lab validation of the method demonstrated the very good performance (96% correct classification, 100% specificity, 4% false positive rate). Only a small fraction of the samples needed to be confirmed with the majority of oils identified rapidly using only the spectroscopic procedure. The results demonstrate the huge potential of the methodology for a wide range of oil authenticity work.