125 resultados para Norreys
Resumo:
A review of the proton radiography technique will be presented. This technique employs laser-accelerated laminar bunches of protons to diagnose the temporal and spatial characteristic of the electric and magnetic fields generated during high-intensity laser-plasma interactions. The remarkable temporal and spatial resolution that this technique can achieve (of the order of a picosecond and a few microns respectively) candidates this technique as the preferrable one, if compared to other techniques, to probe high intensity laser-matterinteractions.
Resumo:
A novel method for characterising the full spectrum of deuteron ions emitted by laser driven multi-species ion sources is discussed. The procedure is based on using differential filtering over the detector of a Thompson parabola ion spectrometer, which enables discrimination of deuterium ions from heavier ion species with the same charge-to-mass ratio (such as C6 +, O8 +, etc.). Commonly used Fuji Image plates were used as detectors in the spectrometer, whose absolute response to deuterium ions over a wide range of energies was calibrated by using slotted CR-39 nuclear track detectors. A typical deuterium ion spectrum diagnosed in a recent experimental campaign is presented, which was produced from a thin deuterated plastic foil target irradiated by a high power laser.
Resumo:
The energy transfer by stimulated Brillouin backscatter from a long pump pulse (15 ps) to a short seed pulse (1 ps)has been investigated in a proof-of-principle demonstration experiment. The two pulses were both amplified in differentbeamlines of a Nd:glass laser system, had a central wavelength of 1054 nm and a spectral bandwidth of 2 nm, and crossedeach other in an underdense plasma in a counter-propagating geometry, off-set by 10◦. It is shown that the energy transferand the wavelength of the generated Brillouin peak depend on the plasma density, the intensity of the laser pulses, and thecompetition between two-plasmon decay and stimulated Raman scatter instabilities. The highest obtained energy transferfrom pump to probe pulse is 2.5%, at a plasma density of 0.17ncr, and this energy transfer increases significantly withplasma density. Therefore, our results suggest that much higher efficiencies can be obtained when higher densities (above0.25ncr) are used.
Resumo:
We report on the successful demonstration of selective acceleration of deuterium ions by target-normal sheath acceleration (TNSA) with a high-energy petawatt laser. TNSA typically produces a multi-species ion beam that originates from the intrinsic hydrocarbon and water vapor contaminants on the target surface. Using the method first developed by Morrison et al. [Phys. Plasmas 19, 030707 (2012)], an ion beam with >99% deuterium ions and peak energy 14 MeV/nucleon is produced with a 200 J, 700 fs, > 10 20 W/cm 2 laser pulse by cryogenically freezing heavy water (D<inf>2</inf>O) vapor onto the rear surface of the target prior to the shot. Within the range of our detectors (0°-8.5°), we find laser-to-deuterium-ion energy conversion efficiency of 4.3% above 0.7 MeV/nucleon while a conservative estimate of the total beam gives a conversion efficiency of 9.4%.
Resumo:
By using polycapillary lenses to focus laser-produced x-ray sources to high intensities, an improvement in signal-to-noise ratio can be achieved. Here the He-alpha line emission produced by driving a titanium backlighter target is focused by a polycapillary lens and the output characterized. The x-ray spot is measured to have a peak intensity of 4.5 x 10(7) photons, with a total photon count of 8.8 x 10(8) in 0.13 +/- 0.01 mm(2). This setup is equivalent to placing the backlighter target 3 mm from the sample with a 600 mu m diameter pinhole. The polycapillary lens enables the placement of the backlighter target at a much larger distance from the sample to be studied and therefore has the ability to greatly improve the signal-to-noise ratio on detectors. We demonstrate this with two simple diffraction experiments using pyrolytic graphite and polycrystalline aluminium.
Resumo:
Calibration of three scintillators (EJ232Q, BC422Q, and EJ410) in a time-of-flight arrangement using a laser drive-neutron source is presented. The three plastic scintillator detectors were calibrated with gamma insensitive bubble detector spectrometers, which were absolutely calibrated over a wide range of neutron energies ranging from sub-MeV to 20 MeV. A typical set of data obtained simultaneously by the detectors is shown, measuring the neutron spectrum emitted from a petawatt laser irradiated thin foil.
Resumo:
Highly anisotropic, beam-like neutron emission with peak flux of the order of 10^9 n/sr was obtained from light nuclei reactions in a pitcher–catcher scenario, by employing MeV ions driven by subpetawatt laser. The spatial profile of the neutron beam, fully captured for the first time by employing a CR39 nuclear track detector, shows a FWHMdivergence angle of ~70 deg, with a peak flux nearly an order of magnitude higher than the isotropic component elsewhere. The observed beamed flux of neutrons is highly favourable for a wide range of applications, and indeed for further transport and moderation to thermal energies. A systematic study employing various combinations of pitcher–catcher materials indicates the dominant reactions being d(p, n+p)1Hand d(d,n)3He. Albeit insufficient cross-section data are available for modelling, the observed anisotropy in the neutrons’ spatial and spectral profiles are most likely related to the directionality and high energy of the projectile ions.
Resumo:
Significant reduction of inherent large divergence of the laser driven MeV proton beams is achieved by strong (of the order of 10^9 V/m ) electrostatic focussing field generated in the confined region of a suitably shaped structure attached to the proton generating foil. The scheme exploits the positively charging of the target following an intense laser interaction. Reduction in the proton beam divergence, and commensurate increase in proton flux is observed while preserving the beam laminarity. The underlying mechanism has been established by the help of particle tracing simulations. Dynamic focussing power of the lens, mainly due to the target discharging, can also be exploited in order to bring up the desired chromaticity of the lens for the proton beams of broad energy range.