115 resultados para Mobile glanceable displays
Resumo:
Those living with an acquired brain injury often have issues with fatigue due to factors resulting from the injury. Cognitive impairments such as lack of memory, concentration and planning have a great impact on an individual’s ability to carry out general everyday tasks, which subsequently has the effect of inducing cognitive fatigue. Moreover, there is difficulty in assessing cognitive fatigue, as there are no real biological markers that can be measured. Rather, it is a very subjective effect that can only be diagnosed by the individual. Consequently, the traditional way of assessing cognitive fatigue is to use a self-assessment questionnaire that is able to determine contributing factors. State of the art methods to evaluate cognitive! fa tigue employ cognitive tests in order to analyse performance on predefined tasks. However, one primary issue with such tests is that they are typically carried out in a clinical environment, therefore do not have the ability to be utilized in situ within everyday life. This paper presents a smartphone application for the evaluation of fatigue, which can be used daily to track cognitive performance in order to assess the influence of fatigue.
Resumo:
This research presents a fast algorithm for projected support vector machines (PSVM) by selecting a basis vector set (BVS) for the kernel-induced feature space, the training points are projected onto the subspace spanned by the selected BVS. A standard linear support vector machine (SVM) is then produced in the subspace with the projected training points. As the dimension of the subspace is determined by the size of the selected basis vector set, the size of the produced SVM expansion can be specified. A two-stage algorithm is derived which selects and refines the basis vector set achieving a locally optimal model. The model expansion coefficients and bias are updated recursively for increase and decrease in the basis set and support vector set. The condition for a point to be classed as outside the current basis vector and selected as a new basis vector is derived and embedded in the recursive procedure. This guarantees the linear independence of the produced basis set. The proposed algorithm is tested and compared with an existing sparse primal SVM (SpSVM) and a standard SVM (LibSVM) on seven public benchmark classification problems. Our new algorithm is designed for use in the application area of human activity recognition using smart devices and embedded sensors where their sometimes limited memory and processing resources must be exploited to the full and the more robust and accurate the classification the more satisfied the user. Experimental results demonstrate the effectiveness and efficiency of the proposed algorithm. This work builds upon a previously published algorithm specifically created for activity recognition within mobile applications for the EU Haptimap project [1]. The algorithms detailed in this paper are more memory and resource efficient making them suitable for use with bigger data sets and more easily trained SVMs.
Resumo:
In order to protect user privacy on mobile devices, an event-driven implicit authentication scheme is proposed in this paper. Several methods of utilizing the scheme for recognizing legitimate user behavior are investigated. The investigated methods compute an aggregate score and a threshold in real-time to determine the trust level of the current user using real data derived from user interaction with the device. The proposed scheme is designed to: operate completely in the background, require minimal training period, enable high user recognition rate for implicit authentication, and prompt detection of abnormal activity that can be used to trigger explicitly authenticated access control. In this paper, we investigate threshold computation through standard deviation and EWMA (exponentially weighted moving average) based algorithms. The result of extensive experiments on user data collected over a period of several weeks from an Android phone indicates that our proposed approach is feasible and effective for lightweight real-time implicit authentication on mobile smartphones.
Resumo:
Laughter and humor are pervasive phenomena in conversa- tional interactions. This paper argues that they function as displays of mind-reading abilities in social interactions–as suggested by the Analogi- cal Peacock Hypothesis (APH). In this view, they are both social bonding signals and can elevate one’s social status. The relational combination of concepts in humor is addressed. However, it is in the inclusion of context and receiver knowledge, required by the APH view, that it contributes the most to existing theories. Taboo and offensive humor are addressed in terms of costly signaling, and implications for human computer inter- action and some possible routes to solutions are suggested.